A federated learning model with the whale optimization algorithm for renewable energy prediction

被引:0
作者
Chifu, Viorica Rozina [1 ]
Cioara, Tudor [1 ]
Anitei, Cristian Daniel [1 ]
Pop, Cristina Bianca [1 ]
Anghel, Ionut [1 ]
Toderean, Liana [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
关键词
Federated learning; Whale optimization algorithm; Renewable energy prediction; Smart grid; LSTM neural network; K -Means clustering;
D O I
10.1016/j.compeleceng.2025.110259
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated prediction models for energy prosumers create a global model by combining insights from local machine learning models trained on-site without centralizing the data. For time series energy data, this collaborative approach faces challenges due to the non-IID nature of the data, variations in generation patterns, the high number of model parameters, and convergence issues, leading to poor prediction accuracy. This paper introduces a novel federated learning model, FedWOA, which uses the whale optimization algorithm to determine optimal aggregation coefficients based on the local model weight vectors by pondering the updates considering the model performance and data dimensionality construct the global shared model. To handle the non-IID data the prosumers were clustered based on the similarity of their energy profiles using KMeans. FedWOA improves the prediction quality at the prosumer site, with a 16 % average reduction of the mean absolute error compared to FedAVG while demonstrating good convergence and reduced loss.
引用
收藏
页数:22
相关论文
共 63 条
[1]   DFTMicroagg: a dual-level anonymization algorithm for smart grid data [J].
Adewole, Kayode S. ;
Torra, Vicenc .
INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2022, 21 (06) :1299-1321
[2]   Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance [J].
Ahsan, Md Manjurul ;
Mahmud, M. A. Parvez ;
Saha, Pritom Kumar ;
Gupta, Kishor Datta ;
Siddique, Zahed .
TECHNOLOGIES, 2021, 9 (03)
[3]   Anomaly Detection in Pedestrian Walkways for Intelligent Transportation System Using Federated Learning and Harris Hawks Optimizer on Remote Sensing Images [J].
Alohali, Manal Abdullah ;
Aljebreen, Mohammed ;
Nemri, Nadhem ;
Allafi, Randa ;
Al Duhayyim, Mesfer ;
Alsaid, Mohamed Ibrahim ;
Alneil, Amani A. ;
Osman, Azza Elneil .
REMOTE SENSING, 2023, 15 (12)
[4]   Blockchain-Based Distributed Federated Learning in Smart Grid [J].
Antal, Marcel ;
Mihailescu, Vlad ;
Cioara, Tudor ;
Anghel, Ionut .
MATHEMATICS, 2022, 10 (23)
[5]   Hybrid Deep Neural Network Model for Multi-Step Energy Prediction of Prosumers [J].
Antal, Marcel ;
Toderean, Liana ;
Cioara, Tudor ;
Anghel, Ionut .
APPLIED SCIENCES-BASEL, 2022, 12 (11)
[6]   Blockchain based decentralized local energy flexibility market [J].
Antal , Claudia ;
Cioara, Tudor ;
Antal, Marcel ;
Mihailescu, Vlad ;
Mitrea, Dan ;
Anghel, Ionut ;
Salomie, Ioan ;
Raveduto, Giuseppe ;
Bertoncini, Massimo ;
Croce, Vincenzo ;
Bragatto, Tommaso ;
Carere, Federico ;
Bellesini, Francesco .
ENERGY REPORTS, 2021, 7 :5269-5288
[7]   Whale Optimization for Cloud-Edge-Offloading Decision-Making for Smart Grid Services [J].
Arcas, Gabriel Ioan ;
Cioara, Tudor ;
Anghel, Ionut .
BIOMIMETICS, 2024, 9 (05)
[8]  
Balasubramaniam S, 2024, Metaverse technologies in healthcare, P135
[9]   Federated learning of predictive models from federated Electronic Health Records [J].
Brisimi, Theodora S. ;
Chen, Ruidi ;
Mela, Theofanie ;
Olshevsky, Alex ;
Paschalidis, Ioannis Ch. ;
Shi, Wei .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 112 :59-67
[10]   Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach [J].
Brophy, Eoin ;
De Vos, Maarten ;
Boylan, Geraldine ;
Ward, Tomas .
SENSORS, 2021, 21 (18)