Prediction of antibiotic resistance mechanisms using a protein language model

被引:1
作者
Yagimoto, Kanami [1 ]
Hosoda, Shion [2 ]
Sato, Miwa [2 ]
Hamada, Michiaki [1 ,3 ,4 ]
机构
[1] Waseda Univ, Grad Sch Adv Sci & Engn, Dept Elect Engn & Biosci, Tokyo 1698555, Japan
[2] Hitachi Ltd, Ctr Exploratory Res Res & Dev Grp, Tokyo 1858601, Japan
[3] Natl Inst Adv Ind Sci & Technol, Computat Bio Big Data Open Innovat Lab CBBD OIL, Tokyo 1698555, Japan
[4] Nippon Med Sch, Grad Sch Med, Tokyo 1138602, Japan
关键词
TOOL;
D O I
10.1093/bioinformatics/btae550
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Antibiotic resistance has emerged as a major global health threat, with an increasing number of bacterial infections becoming difficult to treat. Predicting the underlying resistance mechanisms of antibiotic resistance genes (ARGs) is crucial for understanding and combating this problem. However, existing methods struggle to accurately predict resistance mechanisms for ARGs with low similarity to known sequences and lack sufficient interpretability of the prediction models.Results In this study, we present a novel approach for predicting ARG resistance mechanisms using ProteinBERT, a protein language model (pLM) based on deep learning. Our method outperforms state-of-the-art techniques on diverse ARG datasets, including those with low homology to the training data, highlighting its potential for predicting the resistance mechanisms of unknown ARGs. Attention analysis of the model reveals that it considers biologically relevant features, such as conserved amino acid residues and antibiotic target binding sites, when making predictions. These findings provide valuable insights into the molecular basis of antibiotic resistance and demonstrate the interpretability of pLMs, offering a new perspective on their application in bioinformatics.Availability and implementation The source code is available for free at https://github.com/hmdlab/ARG-BERT. The output results of the model are published at https://waseda.box.com/v/ARG-BERT-suppl.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] Ahmed Shafayat, 2022, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), P3782, DOI 10.1109/BIBM55620.2022.9995492
  • [2] Ahmed S, 2024, bioRxiv, DOI [10.1101/2024.03.20.585944, 10.1101/2024.03.20.585944, DOI 10.1101/2024.03.20.585944]
  • [3] CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database
    Alcock, Brian P.
    Huynh, William
    Chalil, Romeo
    Smith, Keaton W.
    Raphenya, Amogelang R.
    Wlodarski, Mateusz A.
    Edalatmand, Arman
    Petkau, Aaron
    Syed, Sohaib A.
    Tsang, Kara K.
    Baker, Sheridan J. C.
    Dave, Mugdha
    McCarthy, Madeline C.
    Mukiri, Karyn M.
    Nasir, Jalees A.
    Golbon, Bahar
    Imtiaz, Hamna
    Jiang, Xingjian
    Kaur, Komal
    Kwong, Megan
    Liang, Zi Cheng
    Niu, Keyu C.
    Shan, Prabakar
    Yang, Jasmine Y. J.
    Gray, Kristen L.
    Hoad, Gemma R.
    Jia, Baofeng
    Bhando, Timsy
    Carfrae, Lindsey A.
    Farha, Maya A.
    French, Shawn
    Gordzevich, Rodion
    Rachwalski, Kenneth
    Tu, Megan M.
    Bordeleau, Emily
    Dooley, Damion
    Griffiths, Emma
    Zubyk, Haley L.
    Brown, Eric D.
    Maguire, Finlay
    Beiko, Robert G.
    Hsiao, William W. L.
    Brinkman, Fiona S. L.
    Van Domselaar, Gary
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D690 - D699
  • [4] CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
    Alcock, Brian P.
    Raphenya, Amogelang R.
    Lau, Tammy T. Y.
    Tsang, Kara K.
    Bouchard, Megane
    Edalatmand, Arman
    Huynh, William
    Nguyen, Anna-Lisa, V
    Cheng, Annie A.
    Liu, Sihan
    Min, Sally Y.
    Miroshnichenko, Anatoly
    Tran, Hiu-Ki
    Werfalli, Rafik E.
    Nasir, Jalees A.
    Oloni, Martins
    Speicher, David J.
    Florescu, Alexandra
    Singh, Bhavya
    Faltyn, Mateusz
    Hernandez-Koutoucheva, Anastasia
    Sharma, Arjun N.
    Bordeleau, Emily
    Pawlowski, Andrew C.
    Zubyk, Haley L.
    Dooley, Damion
    Griffiths, Emma
    Maguire, Finlay
    Winsor, Geoff L.
    Beiko, Robert G.
    Brinkman, Fiona S. L.
    Hsiao, William W. L.
    Domselaar, Gary, V
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D517 - D525
  • [5] Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering
    Alifano, Pietro
    Palumbo, Carla
    Pasanisi, Daniela
    Tala, Adelfia
    [J]. JOURNAL OF BIOTECHNOLOGY, 2015, 202 : 60 - 77
  • [6] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [7] [Anonymous], 2023, Genetics, V224
  • [8] DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data
    Arango-Argoty, Gustavo
    Garner, Emily
    Prudent, Amy
    Heath, Lenwood S.
    Vikesland, Peter
    Zhang, Liqing
    [J]. MICROBIOME, 2018, 6
  • [9] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [10] BAUERNFEIND A, 1986, REV INFECT DIS, V8, pS470