GAUSSIAN HEAT KERNEL ESTIMATES OF BAMLER-ZHANG TYPE ALONG SUPER RICCI FLOW

被引:0
作者
Kunikawa, Keita
Sakurai, Yohei [1 ,2 ]
机构
[1] Tokushima Univ, Dept Math Sci, Tokushima 7708506, Japan
[2] Saitama Univ, Dept Math, Saitama 3388570, Japan
关键词
Super Ricci flow; M & uuml; ller quantity; distance distortion estimate; cutoff function; mean value inequality; Gaussian heat kernel estimate; LOGARITHMIC SOBOLEV; INEQUALITIES; CURVATURE; ENTROPY; VOLUME; THEOREM; BOUNDS; SPACE;
D O I
10.3934/cpaa.2025030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bamler-Zhang developed geometric analysis on Ricci flow with scalar curvature bound. The aim of this paper is to extend their work to various geometric flows. We generalize some of their results to super Ricci flow whose M & uuml;ller quantity is non-negative, and obtain Gaussian heat kernel estimates.
引用
收藏
页码:1156 / 1178
页数:23
相关论文
共 44 条
[1]  
Bakry D., 1985, S MINAIRE PROBABILIT, V1123, P177, DOI 10.1007/BFb0075847
[2]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[3]  
Bamler R. H., ARXIV
[4]   Compactness theory of the space of Super Ricci flows [J].
Bamler, Richard H. .
INVENTIONES MATHEMATICAE, 2023, 233 (03) :1121-1277
[5]   Heat kernel and curvature bounds in Ricci flows with bounded scalar curvaturePart II [J].
Bamler, Richard H. ;
Zhang, Qi S. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
[6]   Convergence of Ricci flows with bounded scalar curvature [J].
Bamler, Richard H. .
ANNALS OF MATHEMATICS, 2018, 188 (03) :753-831
[7]   Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature [J].
Bamler, Richard H. ;
Zhang, Qi S. .
ADVANCES IN MATHEMATICS, 2017, 319 :396-450
[8]   Harnack estimates for conjugate heat kernel on evolving manifolds [J].
Cao, Xiaodong ;
Guo, Hongxin ;
Hung Tran .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) :201-214
[9]   Mean value inequalities and conditions to extend Ricci flow [J].
Cao, Xiaodong ;
Tran, Hung .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (02) :417-438
[10]   SPACE OF RICCI FLOWS (II)-PART B: WEAK COMPACTNESS OF THE FLOWS [J].
Chen, Xiuxiong ;
Wang, Bing .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) :1-123