Cross-Combination Analyses of Random Forest Feature Selection and Decision Tree Model for Predicting Intraoperative Hypothermia in Total Joint Arthroplasty

被引:1
作者
Long, Keyu [1 ]
Guo, Donghua [2 ]
Deng, Lu [1 ,3 ]
Shen, Haiyan [1 ,2 ]
Zhou, Feiyang [1 ,3 ]
Yang, Yan [2 ]
机构
[1] Cent South Univ, Xiangya Sch Nursing, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp 2, Operat Dept, Changsha, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Hosp 2, Clin Nursing Teaching & Res Sect, Changsha, Hunan, Peoples R China
关键词
total joint arthroplasty; perioperative hypothermia; prediction model; random forest feature selection; decision tree; HIP; GUIDELINE;
D O I
10.1016/j.arth.2024.07.007
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: In total joint arthroplasty patients, intraoperative hypothermia (IOH) is associated with perioperative complications and an increased economic burden. Previous models have some limitations and mainly focus on regression modeling. Random forest (RF) algorithms and decision tree modeling are effective for eliminating irrelevant features and making predictions that aid in accelerating modeling and reducing application difficulty. Methods: We conducted this prospective observational study using convenience sampling and collected data from 327 total joint arthroplasty patients in a tertiary hospital from March 4, 2023, to September 11, 2023. Of those, 229 patients were assigned to the training and 98 to the testing sets. The Chi-square, Mann-Whitney U, and t-tests were used for baseline analyses. The feature variables selection used the RF algorithms, and the decision tree model was trained on 299 examples and validated on 98. The sensitivity, specificity, recall, F1 score, and area under the curve were used to test the model's performance. Results: The RF algorithms identified the preheating time, the volume of flushing fluids, the intraoperative infusion volume, the anesthesia time, the surgical time, and the core temperature after intubation as risk factors for IOH. The decision tree was grown to 5 levels with 9 terminal nodes. The overall incidence of IOH was 42.13%. The sensitivity, specificity, recall, F1 score, and area under the curve were 0.651, 0.907, 0.916, 0.761, and 0.810, respectively. The model indicated strong internal consistency and predictive ability. Conclusions: The preheating time, the volume of flushing fluids, the intraoperative infusion volume, the anesthesia time, the surgical time, and the core temperature after intubation could accurately predict IOH in total joint arthroplasty patients. By monitoring these factors, the clinical staff could achieve early detection and intervention of IOH in total joint arthroplasty patients. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:61 / 69.e2
页数:11
相关论文
共 42 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Measurements of Cabibbo-suppressed hadronic decay fractions of charmed D0 and D+ mesons
    Ablikim, M
    Bai, JZ
    Ban, Y
    Bian, JG
    Cai, X
    Chang, JF
    Chen, HF
    Chen, HS
    Chen, HX
    Chen, JC
    Chen, J
    Chen, J
    Chen, ML
    Chen, YB
    Chi, SP
    Chu, YP
    Cui, XZ
    Dai, HL
    Dai, YS
    Deng, ZY
    Dong, LY
    Dong, QF
    Du, SX
    Du, ZZ
    Fang, J
    Fang, SS
    Fu, CD
    Fu, HY
    Gao, CS
    Gao, YN
    Gong, MY
    Gong, WX
    Gu, SD
    Guo, YN
    Guo, YQ
    He, KL
    He, M
    He, X
    Heng, YK
    Hu, HM
    Hu, T
    Huang, XP
    Huang, XT
    Ji, XB
    Jiang, CH
    Jiang, XS
    Jin, DP
    Jin, S
    Jin, Y
    Jin, Y
    [J]. PHYSICS LETTERS B, 2005, 622 (1-2) : 6 - 13
  • [3] Guideline Implementation: Preventing Hypothermia
    Bashaw, Marie A.
    [J]. AORN JOURNAL, 2016, 103 (03) : 304 - 315
  • [4] Ben-Shlomo Y, 2021, NATL JOINT REGISTRY
  • [5] Constructing bi-plots for random forest: Tutorial
    Blanchet, Lionel
    Vitale, Raffaele
    van Vorstenbosch, Robert
    Stavropoulos, George
    Pender, John
    Jonkers, Daisy
    van Schooten, Frederik-Jan
    Smolinska, Agnieszka
    [J]. ANALYTICA CHIMICA ACTA, 2020, 1131 : 146 - 155
  • [6] Machine learning versus statistical modeling
    Boulesteix, Anne-Laure
    Schmid, Matthias
    [J]. BIOMETRICAL JOURNAL, 2014, 56 (04) : 588 - 593
  • [7] Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia
    Campbell, Gillian
    Alderson, Phil
    Smith, Andrew F.
    Warttig, Sheryl
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2015, (04):
  • [8] [曹立源 Cao Liyuan], 2022, [数据采集与处理, Journal of Data Acquisition & Processing], V37, P134
  • [9] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
    Chatrchyan, S.
    Khachatryan, V.
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Aguilo, E.
    Bergauer, T.
    Dragicevic, M.
    Eroe, J.
    Fabjan, C.
    Friedl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hammer, J.
    Hoch, M.
    Hoermann, N.
    Hrubec, J.
    Jeitler, M.
    Kiesenhofer, W.
    Knuenz, V.
    Krammer, M.
    Kraetschmer, I.
    Liko, D.
    Majerotto, W.
    Mikulec, I.
    Pernicka, M.
    Rahbaran, B.
    Rohringer, C.
    Rohringer, H.
    Schoefbeck, R.
    Strauss, J.
    Szoncso, F.
    Taurok, A.
    Waltenberger, W.
    Walzel, G.
    Widl, E.
    Wulz, C. -E.
    Chekhovsky, V.
    Emeliantchik, I.
    Litomin, A.
    Makarenko, V.
    Mossolov, V.
    Shumeiko, N.
    Solin, A.
    Stefanovitch, R.
    Gonzalez, J. Suarez
    Fedorov, A.
    Korzhik, M.
    Missevitch, O.
    Zuyeuski, R.
    [J]. PHYSICS LETTERS B, 2012, 716 (01) : 30 - 61
  • [10] The Optimal Time and Method for Surgical Prewarming: A Comprehensive Review of the Literature
    Connelly, Lauren
    Cramer, Emily
    DeMott, Quinn
    Piperno, Jennifer
    Coyne, Bethany
    Winfield, Clara
    Swanberg, Michael
    [J]. JOURNAL OF PERIANESTHESIA NURSING, 2017, 32 (03) : 199 - 209