Remaining useful life prediction of Lithium-ion batteries based on data preprocessing and CNN-LSSVR algorithm

被引:0
|
作者
Dong, Ti [1 ,2 ]
Sun, Yiming [1 ,2 ]
Liu, Jia [1 ,2 ]
Gao, Qiang [3 ]
Zhao, Chunrong [4 ]
Cao, Wenjiong [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch New Energy & Power Engn, Lanzhou 730070, Peoples R China
[2] Innovat Ctr Energy Storage Syst & Operat Control T, Lanzhou 730070, Peoples R China
[3] Gansu Construct Investment Holdings Grp, New Energy Sci & Technol Co Ltd, Wuwei 733000, Peoples R China
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, 10 NSW, Sydney 2006, Australia
关键词
Lithium-ion batteries; RUL prediction; Data preprocessing; Multi-resolution singular value decomposition (MRSVD); Convolutional neural network-least squares; support vector regression (CNN-LSSVR); CHARGE ESTIMATION; STATE; MODEL; OPTIMIZATION; PARAMETERS;
D O I
10.1016/j.ijepes.2025.110619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are now widely available in power and energy systems. Targeting the thorny issues of limited battery historical cycle data and the impact of uncertainty in the data collection process in practical applications, this study proposes a Remaining useful life (RUL) prediction method for lithium-ion batteries based on the data preprocessing and the joint convolutional neural network (CNN)-least squares support vector regression (LSSVR) algorithm. Based on the performance degradation characteristics of the battery, the method proposes new RUL assessment indexes and corresponding health factors. The innovative Multi-Resolution Singular Value Decomposition (MRSVD) method is implemented to reduce the interference caused by noise and error. Eventually, the CNN-LSSVR algorithm and mutant particle swarm optimisation algorithm are utilised to solve the mapping regression and hyper-parameter optimisation problems, respectively, to achieve a complete prediction of RUL. In this work, the feasibility of the method is verified using publicly available datasets and compared with other common noise reduction and prediction algorithms after noise reduction and prediction experiments. The results show that the available capacity and internal resistance of the battery as health factors can effectively achieve degradation performance prediction. Compared with other traditional algorithms, the proposed RUL prediction method can reduce the mean absolute error and root mean square error by at least 37% and 61%, respectively, and has better stability. The RUL prediction method provided pave the new way for accurate prediction of battery data with limited number of samples and high noise characteristics. The fast and accurate battery RUL prediction method proposed in this work is highly beneficial for enhancing the stable and economic operation of power and energy systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [22] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [23] A Hybrid Method for the Prediction of the Remaining Useful Life of Lithium-Ion Batteries With Accelerated Capacity Degradation
    Cong, Xinwei
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Jiang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12775 - 12785
  • [24] Multi-Parameter Optimization Method for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Long, Bing
    Gao, Xiaoyu
    Li, Pengcheng
    Liu, Zhen
    IEEE ACCESS, 2020, 8 : 142557 - 142570
  • [25] A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries
    Sharma, Prabhakar
    Bora, Bhaskor J. J.
    BATTERIES-BASEL, 2023, 9 (01):
  • [26] Indirect remaining useful life prognostics for lithium-ion batteries
    Li, Lianbing
    Zhu, Yazun
    Wang, Linglong
    Yue, Donghua
    Li, Duo
    2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 725 - 729
  • [27] Optimized data-driven approach for remaining useful life prediction of Lithium-ion batteries based on sliding window and systematic sampling
    Ansari, Shaheer
    Ayob, Afida
    Lipu, M. S. Hossain
    Hussain, Aini
    Abdolrasol, Maher G. M.
    Zainuri, Muhammad Ammirrul Atiqi Mohd
    Saad, Mohamad Hanif Md.
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [28] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714
  • [29] AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries
    Chen, Daoquan
    Zhou, Xiuze
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [30] Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
    Zhang, YongZhi
    Xiong, Rui
    He, HongWen
    Pecht, Michael
    JOURNAL OF CLEANER PRODUCTION, 2019, 212 : 240 - 249