A Simple Information Criterion for Variable Selection in High-Dimensional Regression

被引:0
|
作者
Pluntz, Matthieu [1 ]
Dalmasso, Cyril [2 ]
Tubert-Bitter, Pascale [1 ]
Ahmed, Ismail [1 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, High Dimens Biostat Drug Safety & Genom, UVSQ,Inserm,CESP, Villejuif, France
[2] Univ Evry Val Essonne, Lab Math & Modelisat Evry LaMME, Evry, France
基金
中国国家自然科学基金;
关键词
FWER control; high-dimensional regression; information criterion; LASSO; pharmacovigilance; variable selection; MODEL SELECTION; REGULARIZATION; LIKELIHOOD; RISK;
D O I
10.1002/sim.10275
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional regression problems, for example with genomic or drug exposure data, typically involve automated selection of a sparse set of regressors. Penalized regression methods like the LASSO can deliver a family of candidate sparse models. To select one, there are criteria balancing log-likelihood and model size, the most common being AIC and BIC. These two methods do not take into account the implicit multiple testing performed when selecting variables in a high-dimensional regression, which makes them too liberal. We propose the extended AIC (EAIC), a new information criterion for sparse model selection in high-dimensional regressions. It allows for asymptotic FWER control when the candidate regressors are independent. It is based on a simple formula involving model log-likelihood, model size, the total number of candidate regressors, and the FWER target. In a simulation study over a wide range of linear and logistic regression settings, we assessed the variable selection performance of the EAIC and of other information criteria (including some that also use the number of candidate regressors: mBIC, mAIC, and EBIC) in conjunction with the LASSO. Our method controls the FWER in nearly all settings, in contrast to the AIC and BIC, which produce many false positives. We also illustrate it for the automated signal detection of adverse drug reactions on the French pharmacovigilance spontaneous reporting database.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Simultaneous variable selection and smoothing for high-dimensional function-on-scalar regression
    Parodi, Alice
    Reimherr, Matthew
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4602 - 4639
  • [32] Variable selection in high-dimensional regression: a nonparametric procedure for business failure prediction
    Amendola, Alessandra
    Giordano, Francesco
    Parrella, Maria Lucia
    Restaino, Marialuisa
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (04) : 355 - 368
  • [33] MCEN: a method of simultaneous variable selection and clustering for high-dimensional multinomial regression
    Ren, Sheng
    Kang, Emily L.
    Lu, Jason L.
    STATISTICS AND COMPUTING, 2020, 30 (02) : 291 - 304
  • [34] Correlation-adjusted regression survival scores for high-dimensional variable selection
    Welchowski, Thomas
    Zuber, Verena
    Schmid, Matthias
    STATISTICS IN MEDICINE, 2019, 38 (13) : 2413 - 2427
  • [35] MCEN: a method of simultaneous variable selection and clustering for high-dimensional multinomial regression
    Sheng Ren
    Emily L. Kang
    Jason L. Lu
    Statistics and Computing, 2020, 30 : 291 - 304
  • [36] High-Dimensional Variable Selection With Competing Events Using Cooperative Penalized Regression
    Burk, Lukas
    Bender, Andreas
    Wright, Marvin N.
    BIOMETRICAL JOURNAL, 2025, 67 (01)
  • [37] Variable selection and identification of high-dimensional nonparametric nonlinear systems by directional regression
    Sun, B.
    Cai, Q. Y.
    Peng, Z. K.
    Cheng, C. M.
    Wang, F.
    Zhang, H. Z.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12101 - 12112
  • [38] NEW IMPROVED CRITERION FOR MODEL SELECTION IN SPARSE HIGH-DIMENSIONAL LINEAR REGRESSION MODELS
    Gohain, Prakash B.
    Jansson, Magnus
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5692 - 5696
  • [39] Variable selection and estimation in high-dimensional models
    Horowitz, Joel L.
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2015, 48 (02): : 389 - 407
  • [40] ENNS: Variable Selection, Regression, Classification and Deep Neural Network for High-Dimensional Data
    Yang, Kaixu
    Ganguli, Arkaprabha
    Maiti, Tapabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25