Observation of the Generalized Kerker Effect Mediated by Quasi-Bound States in the Continuum

被引:3
作者
Jing, Ze [1 ]
Li, Shuangli [2 ]
Ouyang, Siyuan [1 ]
Lu, Junjian [1 ]
Wang, Yueke [1 ]
Huang, Lujun [2 ,3 ]
Li, Lin [2 ,3 ]
Sang, Tian [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Dept Photoelect Informat Sci & Engn, Wuxi 214122, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200241, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Kerker effect; bound states in the continuum; leaky mode resonance; higher multipoles; obliqueincidence; SCATTERING;
D O I
10.1021/acs.nanolett.4c05421
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The generalized Kerker effect (GKE) arising from the interference of high-order multipoles has attracted more interest due to its direct correlation with various functionalities in nanophotonics. The realization of the GKE at oblique incidence is highly desired yet remains underexplored. Herein, we report the experimental observation of the GKE by leveraging quasi-bound states in the continuum (QBICs) supported by a silicon metasurface. The low-Q leaky mode resonance interacts with one of the high-Q QBICs under oblique incidence, leading to the formation of a hybrid magnetic quadrupole (MQ)-magnetic dipole (MD) mode. The amplitude of the hybrid MQ-MD mode can be precisely controlled to achieve an out-of-phase condition by varying the incident angle, resulting in a GKE under the second Kerker condition. Our results reveal that the QBICs associated with rich multipole resonances can provide a new paradigm for tailoring the GKE, suggesting important implications for advanced metadevices.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 38 条
  • [1] Kerker M., Wang D.-S., Giles C.L., Electromagnetic Scattering by Magnetic Spheres, J. Opt. Soc. Am., 73, 6, pp. 765-767, (1983)
  • [2] Staude I., Miroshnichenko A.E., Decker M., Fofang N.T., Liu S., Gonzales E., Dominguez J., Luk T.S., Neshev D.N., Brener I., Kivshar Y., Tailoring Directional Scattering through Tagnetic and Electric Resonances in Subwavelength Silicon Nanodisks, ACS Nano, 7, 9, pp. 7824-7832, (2013)
  • [3] Babicheva V.E., Evlyukhin A.B., Resonant Lattice Kerker Effect in Metasurfaces with Electric and Magnetic Optical Responses, Laser Photonics Rev., 11, 6, (2017)
  • [4] Gerasimov V.S., Ershov A.E., Bikbaev R.G., Rasskazov I.L., Isaev I.L., Semina P.N., Kostyukov A.S., Zakomirnyi V.I., Polyutov S.P., Karpov S.V., Plasmonic Lattice Kerker Effect in Ultraviolet-Visible Spectral Range, Phys. Rev. B, 103, 3, (2021)
  • [5] Liu W., Kivshar Y.S., Generalized Kerker Effects in Nanophotonics and Meta-Optics [Invited], Opt. Express, 26, 10, pp. 13085-13105, (2018)
  • [6] Shamkhi H.K., Baryshnikova K.V., Sayanskiy A., Kapitanova P., Terekhov P.D., Belov P., Karabchevsky A., Evlyukhin A.B., Kivshar Y., Shalin A.S., Transverse Scattering and Generalized Kerker Effects in All-Dielectric Mie-Resonant Metaoptics, Phys. Rev. Lett., 122, 19, (2019)
  • [7] Qin F., Zhang Z., Zheng K., Xu Y., Fu S., Wang Y., Qin Y., Transverse Kerker Effect for Dipole Sources, Phys. Rev. Lett., 128, 19, (2022)
  • [8] Zhang Z., Che Z., Liang X., Chu J., Zeng J., Huang H., Guan F., Shi L., Liu X., Zi J., Realizing Generalized Brewster Effect by Generalized Kerker Effect, Phys. Rev. Appl., 16, 5, (2021)
  • [9] Poshakinskiy A.V., Poddubny A.N., Optomechanical Kerker Effect, Phys. Rev. X, 9, 1, (2019)
  • [10] Liu A.-Y., Hsieh J.-C., Lin K.-I., Tseng S.H., Hsiao H.-H., Third Harmonic Generation Enhanced by Generalized Kerker Condition in All-Dielectric Metasurfaces, Adv. Opt. Mater., 11, 19, (2023)