A Comparative Study of Representation Learning Techniques for Dynamic Networks

被引:1
作者
Vazquez, Carlos Ortega [1 ]
Mitrovic, Sandra [1 ]
De Weerdt, Jochen [1 ]
vanden Broucke, Seppe [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Res Ctr Informat Syst Engn LIRIS, Leuven, Belgium
[2] Univ Ghent, Dept Business Informat & Operat Management, Ghent, Belgium
来源
TRENDS AND INNOVATIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3 | 2020年 / 1161卷
关键词
Dynamic networks; Representation learning; LINK-PREDICTION;
D O I
10.1007/978-3-030-45697-9_51
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Representation Learning in dynamic networks has gained increasingly more attention due to its promising applicability. In the literature, we can find two popular approaches that have been adapted to dynamic networks: random-walk based techniques and graph-autoencoders. Despite the popularity, no work has compared them in well-know datasets. We fill this gap by using two link prediction settings that evaluate the techniques. We find standard node2vec, a random-walk method, outperforms the graph-autoencoders.
引用
收藏
页码:523 / 530
页数:8
相关论文
共 30 条
[1]  
Bamler R, 2017, PR MACH LEARN RES, V70
[2]  
Barkan O, 2017, AAAI CONF ARTIF INTE, P3135
[3]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[4]  
Bishop CM., 2006, Pattern Recognition and Machine Learning
[5]  
Brazinskas A., 2018, P 27 INT C COMP LING
[6]   A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications [J].
Cai, HongYun ;
Zheng, Vincent W. ;
Chang, Kevin Chen-Chuan .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) :1616-1637
[7]  
Dasgupta K., 2008, EDBT, P668
[8]  
De Winter S, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P1234, DOI 10.1109/ASONAM.2018.8508272
[9]  
Goyal P, 2018, arXiv, DOI DOI 10.48550/ARXIV.1805.11273
[10]   dyngraph2vec: Capturing network dynamics using dynamic graph representation learning [J].
Goyal, Palash ;
Chhetri, Sujit Rokka ;
Canedo, Arquimedes .
KNOWLEDGE-BASED SYSTEMS, 2020, 187