Convex ancient solutions to anisotropic curve shortening flow

被引:0
作者
Bourni, Theodora [1 ]
Richards, Benjamin [1 ]
机构
[1] Univ Tennessee, Dept Math, 227 Ayres Hall,1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
curvature flows; ancient solutions; EVOLVING PLANE-CURVES; CURVATURE;
D O I
10.4171/RMI/1503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a translating solution to anisotropic curve shortening and show that for a given anisotropic factor g: S 1 I[8C, and a given direction speed, this translator is unique. We then construct an ancient compact solution anisotropic curve shortening flow, and show that this solution, along with the appropriate translating solution, are the unique solutions to anisotropic curve shortening flow that lie in a slab of a given width, and in no smaller slab.
引用
收藏
页码:2311 / 2324
页数:14
相关论文
共 50 条
  • [31] A gap theorem for ancient solutions to the Ricci flow
    Yokota, Takumi
    PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 505 - 514
  • [32] On the saddle point property of Abresch-Langer curves under the curve shortening flow
    Au, Thomas Kwok-Keung
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (01) : 1 - 21
  • [33] Non-homothetic convex ancient solutions for flows by high powers of curvature
    Risa, Susanna
    Sinestrari, Carlo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) : 601 - 618
  • [34] Non-homothetic convex ancient solutions for flows by high powers of curvature
    Susanna Risa
    Carlo Sinestrari
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 601 - 618
  • [35] The zoo of solitons for curve shortening in Rn
    Altschuler, Dylan J.
    Altschuler, Steven J.
    Angenent, Sigurd B.
    Wu, Lani F.
    NONLINEARITY, 2013, 26 (05) : 1189 - 1226
  • [36] Relaxation of the flow of triods by curve shortening flow via the vector-valued parabolic Allen-Cahn equation
    Saez-Trumper, Mariel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 634 : 143 - 168
  • [37] Rotational symmetry and properties of the ancient solutions of Ricci flow on surfaces
    Hsu, Shu-Yu
    GEOMETRIAE DEDICATA, 2013, 162 (01) : 375 - 388
  • [38] Ancient Solutions of Ricci Flow with Type I Curvature Growth
    Lynch, Stephen
    Abrego, Andoni Royo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [39] Rotational symmetry and properties of the ancient solutions of Ricci flow on surfaces
    Shu-Yu Hsu
    Geometriae Dedicata, 2013, 162 : 375 - 388
  • [40] New type I ancient compact solutions of the Yamabe flow
    Daskalopoulos, Panagiota
    del Pino, Manuel
    King, John
    Sesum, Natasa
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (06) : 1667 - 1691