Convex ancient solutions to anisotropic curve shortening flow

被引:0
|
作者
Bourni, Theodora [1 ]
Richards, Benjamin [1 ]
机构
[1] Univ Tennessee, Dept Math, 227 Ayres Hall,1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
curvature flows; ancient solutions; EVOLVING PLANE-CURVES; CURVATURE;
D O I
10.4171/RMI/1503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a translating solution to anisotropic curve shortening and show that for a given anisotropic factor g: S 1 I[8C, and a given direction speed, this translator is unique. We then construct an ancient compact solution anisotropic curve shortening flow, and show that this solution, along with the appropriate translating solution, are the unique solutions to anisotropic curve shortening flow that lie in a slab of a given width, and in no smaller slab.
引用
收藏
页码:2311 / 2324
页数:14
相关论文
共 50 条
  • [21] Grid Peeling and the Affine Curve-Shortening Flow
    Eppstein, David
    Har-Peled, Sariel
    Nivasch, Gabriel
    EXPERIMENTAL MATHEMATICS, 2020, 29 (03) : 306 - 316
  • [22] The Curve Shortening Flow in the Metric-Affine Plane
    Rovenski, Vladimir
    MATHEMATICS, 2020, 8 (05)
  • [23] A HIGHER ORDER SCHEME FOR A TANGENTIALLY STABILIZED PLANE CURVE SHORTENING FLOW WITH A DRIVING FORCE
    Balazovjech, Martin
    Mikula, Karol
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2277 - 2294
  • [24] AN ADAPTIVE MOVING MESH METHOD FOR FORCED CURVE SHORTENING FLOW
    Mackenzie, J. A.
    Nolan, M.
    Rowlatt, C. F.
    Insall, R. H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02) : A1170 - A1200
  • [25] Type I ancient compact solutions of the Yamabe flow
    Daskalopoulos, Panagiota
    del Pino, Manuel
    King, John
    Sesum, Natasa
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 137 : 338 - 356
  • [26] Inverse Anisotropic Curvature Flow from Convex Hypersurfaces
    Xia, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (03) : 2131 - 2154
  • [27] Sharp entropy bounds for plane curves and dynamics of the curve shortening flow
    Baldauf, Julius
    Sun, Ao
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2023, 31 (03) : 595 - 624
  • [28] Ancient solutions of the Ricci flow on bundles
    Lu, Peng
    Wang, Y. K.
    ADVANCES IN MATHEMATICS, 2017, 318 : 411 - 456
  • [29] Ancient solutions to the Kahler Ricci flow
    Li, Yu
    GEOMETRY & TOPOLOGY, 2024, 28 (07) : 3257 - 3283
  • [30] EXISTENCE AND PROPERTIES OF ANCIENT SOLUTIONS OF THE YAMABE FLOW
    Hsu, Shu-Yu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (01) : 91 - 129