Convex ancient solutions to anisotropic curve shortening flow

被引:0
|
作者
Bourni, Theodora [1 ]
Richards, Benjamin [1 ]
机构
[1] Univ Tennessee, Dept Math, 227 Ayres Hall,1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
curvature flows; ancient solutions; EVOLVING PLANE-CURVES; CURVATURE;
D O I
10.4171/RMI/1503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a translating solution to anisotropic curve shortening and show that for a given anisotropic factor g: S 1 I[8C, and a given direction speed, this translator is unique. We then construct an ancient compact solution anisotropic curve shortening flow, and show that this solution, along with the appropriate translating solution, are the unique solutions to anisotropic curve shortening flow that lie in a slab of a given width, and in no smaller slab.
引用
收藏
页码:2311 / 2324
页数:14
相关论文
共 50 条
  • [11] Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
    Lacoin, Hubert
    Simenhaus, Francois
    Toninelli, Fabio Lucio
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (12) : 2557 - 2615
  • [12] 2π-PERIODIC SELF-SIMILAR SOLUTIONS FOR THE ANISOTROPIC AFFINE CURVE SHORTENING PROBLEM II
    Jiang, Meiyue
    Wei, Juncheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 785 - 803
  • [13] A new proof of a Harnack inequality for the curve shortening flow
    Bailesteanu, Mihai
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2621 - 2630
  • [14] Classification of Compact Convex Ancient Solutions of the Planar Affine Normal Flow
    Mohammad N. Ivaki
    The Journal of Geometric Analysis, 2016, 26 : 663 - 671
  • [15] Classification of Compact Convex Ancient Solutions of the Planar Affine Normal Flow
    Ivaki, Mohammad N.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 663 - 671
  • [16] A HIGHER ORDER SCHEME FOR THE CURVE SHORTENING FLOW OF PLANE CURVES
    Balazovjech, Martin
    Mikula, Karol
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 165 - 175
  • [17] Uniqueness of two-convex closed ancient solutions to the mean curvature flow
    Angenent, Sigurd
    Daskalopoulos, Panagiota
    Sesum, Natasa
    ANNALS OF MATHEMATICS, 2020, 192 (02) : 353 - 436
  • [18] Linearised Euclidean Shortening Flow of Curve Geometry
    Alfons H. Salden
    Bart M. ter Haar Romeny
    Max A. Viergever
    International Journal of Computer Vision, 1999, 34 : 29 - 67
  • [19] Linearised euclidean shortening flow of curve geometry
    Salden, AH
    Romeny, BMT
    Viergever, MA
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 34 (01) : 29 - 67
  • [20] Legendrian curve shortening flow in R3
    Drugan, Gregory
    He, Weiyong
    Warren, Micah W.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (04) : 759 - 785