Convex ancient solutions to anisotropic curve shortening flow

被引:0
|
作者
Bourni, Theodora [1 ]
Richards, Benjamin [1 ]
机构
[1] Univ Tennessee, Dept Math, 227 Ayres Hall,1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
curvature flows; ancient solutions; EVOLVING PLANE-CURVES; CURVATURE;
D O I
10.4171/RMI/1503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a translating solution to anisotropic curve shortening and show that for a given anisotropic factor g: S 1 I[8C, and a given direction speed, this translator is unique. We then construct an ancient compact solution anisotropic curve shortening flow, and show that this solution, along with the appropriate translating solution, are the unique solutions to anisotropic curve shortening flow that lie in a slab of a given width, and in no smaller slab.
引用
收藏
页码:2311 / 2324
页数:14
相关论文
共 50 条
  • [1] Convex ancient solutions to curve shortening flow
    Bourni, Theodora
    Langford, Mat
    Tinaglia, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [2] Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere
    Paul Bryan
    Janelle Louie
    The Journal of Geometric Analysis, 2016, 26 : 858 - 872
  • [3] Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere
    Bryan, Paul
    Louie, Janelle
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 858 - 872
  • [4] Classifying Convex Compact Ancient Solutions to the Affine Curve Shortening Flow
    Shibing Chen
    The Journal of Geometric Analysis, 2015, 25 : 1075 - 1079
  • [5] Classifying Convex Compact Ancient Solutions to the Affine Curve Shortening Flow
    Chen, Shibing
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1075 - 1079
  • [6] Existence of Self-similar Solutions to the Anisotropic Affine Curve-shortening Flow
    Lu, Jian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (23) : 9440 - 9470
  • [7] Stability analysis for the anisotropic curve shortening flow of planar networks
    Goesswein, Michael
    Novaga, Matteo
    Pozzi, Paola
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (05):
  • [8] CLASSIFICATION OF CONVEX ANCIENT FREE-BOUNDARY CURVE-SHORTENING FLOWS IN THE DISC
    Bourni, Theodora
    Langford, Mat
    ANALYSIS & PDE, 2023, 16 (09): : 2225 - 2240
  • [9] EVOLUTION OF CONVEX LENS-SHAPED NETWORKS UNDER THE CURVE SHORTENING FLOW
    Schnuerer, Oliver C.
    Azouani, Abderrahim
    Georgi, Marc
    Hell, Juliette
    Jangle, Nihar
    Koeller, Amos
    Marxen, Tobias
    Ritthaler, Sandra
    Saez, Mariel
    Schulze, Felix
    Smith, Brian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (05) : 2265 - 2294
  • [10] 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem
    Jiang, Meiyue
    Wang, Liping
    Wei, Juncheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) : 535 - 565