An adaptive finite difference method for total variation minimization

被引:0
|
作者
Jacumin, Thomas [1 ]
Langer, Andreas [1 ]
机构
[1] Lund Univ, Ctr Math Sci, Lund, Sweden
关键词
Total variation; Non-smooth optimization; Image reconstruction; Optical flow estimation; Adaptive finite difference discretization; DATA-FIDELITY; NONSMOOTH; ALGORITHM;
D O I
10.1007/s11075-025-02044-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an adaptive finite difference scheme in order to numerically solve total variation type problems for image processing tasks. The automatic generation of the grid relies on indicators derived from a local estimation of the primal-dual gap error. This process leads in general to a non-uniform grid for which we introduce an adjusted finite difference method. Further we quantify the impact of the grid refinement on the respective discrete total variation. In particular, it turns out that a finer discretization may lead to a higher value of the discrete total variation for a given function. To compute a numerical solution on non-uniform grids we derive a semi-smooth Newton algorithm in 2D for scalar and vector-valued total variation minimization. We present numerical experiments for image denoising and the estimation of motion in image sequences to demonstrate the applicability of our adaptive scheme.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Structure Adaptive Total Variation Minimization-Based Image Decomposition
    Song, Jinjoo
    Cho, Heeryon
    Yoon, Jungho
    Yoon, Sang Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (09) : 2164 - 2176
  • [22] A convergent overlapping domain decomposition method for total variation minimization
    Massimo Fornasier
    Andreas Langer
    Carola-Bibiane Schönlieb
    Numerische Mathematik, 2010, 116 : 645 - 685
  • [23] An efficient augmented Lagrangian method with applications to total variation minimization
    Chengbo Li
    Wotao Yin
    Hong Jiang
    Yin Zhang
    Computational Optimization and Applications, 2013, 56 : 507 - 530
  • [24] A convergent overlapping domain decomposition method for total variation minimization
    Fornasier, Massimo
    Langer, Andreas
    Schoenlieb, Carola-Bibiane
    NUMERISCHE MATHEMATIK, 2010, 116 (04) : 645 - 685
  • [25] An efficient augmented Lagrangian method with applications to total variation minimization
    Li, Chengbo
    Yin, Wotao
    Jiang, Hong
    Zhang, Yin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (03) : 507 - 530
  • [26] Adaptive Weighted Total Variation Minimization Based Alternating Direction Method of Multipliers for Limited Angle CT Reconstruction
    Luo, Fulin
    Li, Weichen
    Tu, Weiping
    Wu, Weiwen
    IEEE ACCESS, 2018, 6 : 64225 - 64236
  • [27] Global total variation minimization
    Dibos, F
    Koepfler, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (02) : 646 - 664
  • [28] Adaptive finite difference method for the simulation of batch crystallization
    Lee, G
    Meyer, XM
    Biscans, B
    Le Lann, JM
    Yoon, ES
    COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 : S363 - S366
  • [29] An adaptive finite-difference method for traveltimes and amplitudes
    Qian, JL
    Symes, WW
    GEOPHYSICS, 2002, 67 (01) : 167 - 176
  • [30] Total variation diminishing nonstandard finite difference schemes for conservation laws
    Anguelov, Roumen
    Lubuma, Jean M. -S.
    Minani, Froduald
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (3-4) : 160 - 166