Existence of nodal solutions of nonlinear Lidstone boundary value problems

被引:0
|
作者
Yan, Meng [1 ]
Zhang, Tingting [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 09期
基金
中国国家自然科学基金;
关键词
Lidstone; nodal solutions; spectrum; bifurcation; disconjugacy theory; POSITIVE SOLUTIONS; GLOBAL BIFURCATION;
D O I
10.3934/era.2024256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem { (-1)(m)(u((2m))(t)+cu((2m-2))(t))=lambda a(t)f(u), t is an element of(0,r), u((2i))(0)=u((2i))(r)=0,i=0,1,<middle dot><middle dot><middle dot>,m-1, where > 0 is a parameter, c is a constant, m >= 1 is an integer, a: [0,r]-> [0,0 infinity) is continuous with a 0 on the subinterval within [0, r], and f: R Ris a continuous function. We analyze the spectrum structure of the corresponding linear eigenvalue problem via the disconjugacy theory and Elias's spectrum theory. As applications of our spectrum results, we show that problem (P) has nodal solutions under some suitable conditions. The bifurcation technique is used to obtain the main results of this paper.
引用
收藏
页码:5542 / 5556
页数:15
相关论文
共 50 条