Grape seed proanthocyanidin (GSP) is a type of plant polyphenol with a wide variety of biological activities, such as antioxidant properties. This study investigated the effects of GSP supplementation on growth performance and meat quality in growing-finishing pigs. A total of 180 pigs (with an initial average body weight of 30.37 +/- 0.66 kg) were randomly assigned to five treatments: a control diet or a control diet supplemented with GSP at 15, 30, 60, and 120 mg/kg. Each treatment group comprised six replicate pens (6 pigs per pen). Results showed that GSP supplementation linearly increased the average daily gain (P = 0.048) and quadratically decreased the feed intake to gain ratio (P = 0.049) with the lowest values at 30 and 60 mg/kg GSP. Serum concentrations of immunoglobulins (Ig) (IgA, IgG, IgM), total antioxidative capacity, catalase, and total superoxide dismutase were elevated with the peak levels at 30 mg/kg GSP (P < 0.05). Serum glutathione peroxidase increased and malondialdehyde decreased quadratically (P < 0.05), with peak and trough levels at 120 and 60 mg/kg GSP, respectively. The GSP also improved dressing percentage and muscle redness (a & lowast;(45 min)) with optimal levels at 30 and 60 mg/kg (P < 0.05). Additionally, GSP supplementation quadratically reduced the muscle yellowness (b & lowast;(24 h)) and shear force (P < 0.05), with the lowest values at 120 mg/kg. The expression level of myosin heavy chain I in muscle was quadratically increased with maximum expression at 30 and 60 mg/kg (P = 0.015). Furthermore, the expression levels of fatty acid synthase, phosphoenolpyruvate carboxykinase (PEPCK), and glucokinase in the muscle were decreased quadratically (P < 0.05) with the lowest values at 120 mg/kg. Additionally, GSP supplementation at 60 mg/kg upregulated the expression of hepatic hormone-sensitive triglyceride lipase and PEPCK (P < 0.05). These results suggest that GSP enhances carcass characteristics and meat quality in growing-finishing pigs, potentially through improved antioxidative capacity, modified muscle fiber type distribution, and altered glucose-lipid metabolism in muscle and liver. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).