Maximal operators along flat curves with one variable vector field

被引:0
作者
Kim, Joonil [1 ]
Oh, Jeongtae [2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Maximal functions along curves; pseudo-differential operators; HILBERT-TRANSFORMS; SINGULAR-INTEGRALS;
D O I
10.1017/S0013091524000555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a maximal average along a family of curves {(t,m(x(1))gamma(t)):t is an element of[-r,r]}, where gamma|([0,infinity) )is a convex function and m is a measurable function. Under the assumption of the doubling property of gamma ' and 1 <= m(x(1))<= 2, we prove the L-p(R-2) boundedness of the maximal average. As a corollary, we obtain the pointwise convergence of the average in r > 0 without any size assumption for a measurable m.
引用
收藏
页码:1212 / 1228
页数:17
相关论文
共 24 条