PIDA control of depth of hypnosis in total intravenous anesthesia

被引:1
|
作者
Milanesi, Marco [1 ]
Paolino, Nicola [1 ]
Schiavo, Michele [1 ]
Padula, Fabrizio [2 ]
Visioli, Antonio [1 ]
机构
[1] Univ Brescia, Dipartimento Ingn Meccan & Ind, Brescia, Italy
[2] Curtin Univ, Curtin Ctr Optimizat & Decis Sci, Perth, WA, Australia
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 07期
关键词
Anesthesia control; Depth of Hypnosis; PIDA control; Tuning; Robustness; CLOSED-LOOP CONTROL; PROPOFOL; DESIGN;
D O I
10.1016/j.ifacol.2024.08.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the use of a Proportional -Integral-Derivative -Acceleration (PIDA) controller for the Depth -of-Hypnosis (DoH) control in total intravenous anesthesia (TIVA). In particular, the infusion rate of the hypnotic drug propofol is the control variable and the bispectral index (BIS) is the controlled variable. The PIDA controller is tuned by using a population-based approach and its robustness is evaluated with a Monte Carlo method. The noise amplification is reduced by means of suitably designed low-pass filters. A comparison with a PID controller is performed, showing that the addition of the acceleration action allows us to design a more aggressive controller, thus reducing the risk of awareness of the patient in the maintenance phase.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 50 条
  • [1] Analysis of the performance achievable with a PIDD2α controller for depth of hypnosis in total intravenous anesthesia
    Milanesi, Marco
    Paolino, Nicola
    Schiavo, Michele
    Padula, Fabrizio
    Visioli, Antonio
    IFAC PAPERSONLINE, 2024, 58 (24): : 478 - 483
  • [2] Optimized PID control of depth of hypnosis in anesthesia
    Padula, Fabrizio
    Ionescu, Clara
    Latronico, Nicola
    Paltenghi, Massimiliano
    Visioli, Antonio
    Vivacqua, Giulio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 144 : 21 - 35
  • [3] Two-degree-of-freedom control scheme for depth of hypnosis in anesthesia
    Pawlowski, A.
    Merigo, L.
    Guzman, J. L.
    Dormido, S.
    Visioli, A.
    IFAC PAPERSONLINE, 2018, 51 (04): : 72 - 77
  • [4] A model-predictive hypnosis control system under total intravenous anesthesia
    Sawaguchi, Yoshihito
    Furutani, Eiko
    Shirakanmi, Gotaro
    Araki, Mituhiko
    Fukuda, Kazuhiko
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (03) : 874 - 887
  • [5] Testing the depth of anesthesia in total intravenous and balanced anesthesia
    Sanja, Vickovic
    Radmila, Popovic
    Teodora, Bozic
    Arsen, Uvelin
    Mirka, Lukic-Sarkanovic
    Ranko, Zdravkovic
    KUWAIT MEDICAL JOURNAL, 2021, 53 (04): : 388 - 394
  • [6] Event-Based control of depth of hypnosis in anesthesia
    Merigo, Luca
    Beschi, Manuel
    Padula, Fabrizio
    Latronico, Nicola
    Paltenghi, Massimiliano
    Visioli, Antonio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 147 : 63 - 83
  • [7] The effect of ketamine on depth of hypnosis indices during total intravenous anesthesia-a comparative study using a novel electroencephalography case replay system
    Schueler, Stephanie S.
    Petersen, Christian L.
    West, Nicholas C.
    Ansermino, J. Mark
    Merchant, Richard N.
    Gorges, Matthias
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2021, 35 (05) : 1027 - 1036
  • [8] A model-based control scheme for depth of hypnosis in anesthesia
    Merigo, Luca
    Padula, Fabrizio
    Pawlowski, Andrzej
    Dormido, Sebastian
    Guzman Sanchez, Jose Luis
    Latronico, Nicola
    Paltenghi, Massimiliano
    Visioli, Antonio
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 42 : 216 - 229
  • [9] Constrained Control of Depth of Hypnosis During Induction Phase
    Hosseinzadeh, Mehdi
    Dumont, Guy A.
    Garone, Emanuele
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2490 - 2496
  • [10] The effect of ketamine on depth of hypnosis indices during total intravenous anesthesia—a comparative study using a novel electroencephalography case replay system
    Stephanie S. Schüler
    Christian L. Petersen
    Nicholas C. West
    J. Mark Ansermino
    Richard N. Merchant
    Matthias Görges
    Journal of Clinical Monitoring and Computing, 2021, 35 : 1027 - 1036