Laser-induced breakdown spectroscopy combined with multi-task convolutional neural network for analyzing Sm, Nd, and Gd elements in uranium polymetallic ore

被引:1
作者
Wu, Zhuo [1 ,2 ]
Wu, Jian [3 ]
Guo, Xinyu [3 ]
Zhu, Huihui [1 ,2 ]
Zhang, Yubo [1 ,2 ]
Su, Xiaohui [4 ]
Chen, Fuli [1 ,2 ]
Li, Minghui [4 ]
Wang, Runhui [1 ,2 ]
Xu, Keyi [1 ,2 ]
Lu, Tao [1 ,2 ]
机构
[1] China Univ Geosci Wuhan, Sch Automat, Wuhan, Hubei, Peoples R China
[2] Hubei Prov Key Lab Adv Control & Intelligent Autom, Wuhan, Hubei, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian, Shaanxi, Peoples R China
[4] China Univ Geosci Wuhan, Sch Future Technol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser-induced breakdown spectroscopy; Uranium polymetallic ore; Convolutional neural networks; Rare-earth elements;
D O I
10.1016/j.sab.2025.107153
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
When analyzing rare earth elements in uranium polymetallic ores using laser-induced breakdown spectroscopy (LIBS), issues such as spectral interference and overlap significantly reduce the accuracy of elemental analysis. A multi-task convolutional neural network (CNN) model based on an uncertainty-weighted loss function is developed, with raw LIBS spectral data as the input. Conduct experiments using pure oxides under the same experimental conditions to identify the characteristic spectral lines. The results show that, compared to normalized and feature-extracted data processed with partial least squares (PLS), random forests (RF), and single-task CNN models, multi-task CNN model with uncertainty loss achieves the best quantitative results for Sm and Nd elements (Sm: R2 = 0.9939, RMSE = 0.6373; Nd: R2 = 0.9987, RMSE = 0.3040), and also demonstrates excellent performance in quantifying Gd (R2 = 0.9949, RMSE = 0.6106). The multi-task CNN model based on an uncertainty-weighted loss function indicates great potential applications for end-to-end processing of LIBS spectra from uranium polymetallic ore. (c) 2001 Elsevier Science. All rights reserved.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Convolutional neural networks for vibrational spectroscopic data analysis [J].
Acquarelli, Jacopo ;
van Laarhoven, Twan ;
Gerretzen, Jan ;
Tran, Thanh N. ;
Buydens, Lutgarde M. C. ;
Marchiori, Elena .
ANALYTICA CHIMICA ACTA, 2017, 954 :22-31
[2]   Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations [J].
Aime, S ;
Cabella, C ;
Colombatto, S ;
Crich, SG ;
Gianolio, E ;
Maggioni, F .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2002, 16 (04) :394-406
[3]   Direct determination of lanthanides by LIBS in REE-rich ores: comparison between univariate and DoE based multivariate calibrations with respect to spectral resolution [J].
Akhmetzhanov, Timur F. ;
Popov, Andrey M. .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2022, 37 (11) :2330-2339
[4]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[5]   Current trends in laser-induced breakdown spectroscopy: a tutorial review [J].
Andrade, Daniel Fernandes ;
Pereira-Filho, Edenir Rodrigues ;
Amarasiriwardena, Dulasiri .
APPLIED SPECTROSCOPY REVIEWS, 2021, 56 (02) :98-114
[6]  
Arif N., 2018, Determination of elements in uranium ore using icp aes plasma, P40
[7]   Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact [J].
Balaram, V. .
GEOSCIENCE FRONTIERS, 2019, 10 (04) :1285-1303
[8]   Rare Earth Element Determination in Uranium Ore Concentrates Using Online and Offline Chromatography Coupled to ICP-MS [J].
Bradley, Veronica C. ;
Manard, Benjamin T. ;
Roach, Benjamin D. ;
Metzger, Shalina C. ;
Rogers, Kayron T. ;
Ticknor, BrianW. ;
Wysor, Sarah K. ;
Brockman, John D. ;
Hexel, Cole R. .
MINERALS, 2020, 10 (01)
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   MAGNETISM, METAL-INSULATOR TRANSITION, AND OPTICAL PROPERTIES IN SM-MONOCHALCOCENIDES DIVALENT RARE-EARTH MONOCHALCOGENIDES [J].
BUCHER, E ;
NARAYANAMURTI, V ;
JAYARAMAN, A .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (04) :1741-+