Statistical Modelling for Big and Little Data

被引:0
|
作者
Henderson, Robin [1 ]
机构
[1] Newcastle Univ, Newcastle Upon Tyne, Tyne & Wear, England
来源
DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024 | 2024年
关键词
Data science; Extrapolation; Inference; Smoothing; Two cultures;
D O I
10.1007/978-3-031-65723-8_38
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While the difference between "Data Science" and "Statistics" disciplines is, at best, blurred, many people associate machine learning methods and big data with the former, and modelling and inference for small samples (little data) with the latter. We present a big data application where no sophisticated method at all is needed, a small data application where a partial modelling approach seems useful, and a big-and-little data application where we can borrow strength from limited information in a large sample, to improve estimation based on more detailed data in a small sample.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [41] Agile Big Data Analytics
    Grady, Nancy W.
    Payne, Jason A.
    Parker, Huntley
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 2331 - 2339
  • [42] Effectively and Efficiently Supporting Visual Big Data Analytics over Big Sequential Data: An Innovative Data Science Approach
    Cuzzocrea, Alfredo
    Sisara, Majid Abbasi
    Leung, Carson K.
    Wen, Yan
    Jiang, Fan
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT II, 2022, 13376 : 113 - 125
  • [43] Statistical and computational challenges for whole cell modelling
    Stumpf, Michael P. H.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 58 - 63
  • [44] Statistical modelling via dimension reduction methods
    Chong, YS
    Wang, JL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3561 - 3568
  • [45] Flat-histogram extrapolation as a useful tool in the age of big data
    Mahynski, Nathan A.
    Hatch, Harold W.
    Witman, Matthew
    Sheen, David A.
    Errington, Jeffrey R.
    Shen, Vincent K.
    MOLECULAR SIMULATION, 2021, 47 (05) : 395 - 407
  • [46] Big Data Science on COVID-19 Data
    Leung, Carson K.
    Chen, Yubo
    Shang, Siyuan
    Deng, Deyu
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (BIGDATASE 2020), 2020, : 14 - 21
  • [47] Federated Query processing for Big Data in Data Science
    Muniswamaiah, Manoj
    Agerwala, Tilak
    Tappert, Charles C.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 6145 - 6147
  • [48] Big Data and Data Science:Opportunities and Challenges of iSchools
    Il-Yeol Song
    Yongjun Zhu
    Journal of Data and Information Science, 2017, (03) : 1 - 18
  • [49] A Data Science Paradigm Shift in the Age of Big Data
    Wang, Jiang-ping
    INTERNATIONAL CONFERENCE ON MODERN EDUCATION AND INFORMATION TECHNOLOGY (MEIT 2017), 2017, : 402 - 406
  • [50] An Upstream Business Data Science in a Big Data Perspective
    Nimmagadda, Shastri L.
    Reiners, Torsten
    Rudra, Amit
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 : 1881 - 1890