Statistical Modelling for Big and Little Data

被引:0
|
作者
Henderson, Robin [1 ]
机构
[1] Newcastle Univ, Newcastle Upon Tyne, Tyne & Wear, England
来源
DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024 | 2024年
关键词
Data science; Extrapolation; Inference; Smoothing; Two cultures;
D O I
10.1007/978-3-031-65723-8_38
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
While the difference between "Data Science" and "Statistics" disciplines is, at best, blurred, many people associate machine learning methods and big data with the former, and modelling and inference for small samples (little data) with the latter. We present a big data application where no sophisticated method at all is needed, a small data application where a partial modelling approach seems useful, and a big-and-little data application where we can borrow strength from limited information in a large sample, to improve estimation based on more detailed data in a small sample.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [21] Big Data Science
    Morik, Katharina
    Bockermann, Christian
    Buschjaeger, Sebastian
    KUNSTLICHE INTELLIGENZ, 2018, 32 (01): : 27 - 36
  • [22] Big Data Analytics
    Rajaraman, V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2016, 21 (08): : 695 - 716
  • [23] Big Data in Ophthalmology
    Cheng, Ching-Yu
    Soh, Zhi Da
    Majithia, Shivani
    Thakur, Sahil
    Rim, Tyler Hyungtaek
    Tham, Yih Chung
    Wong, Tien Yin
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2020, 9 (04): : 291 - 298
  • [24] The Challenge of Big Data and Data Science
    Brady, Henry E.
    ANNUAL REVIEW OF POLITICAL SCIENCE, VOL 22, 2019, 22 : 297 - 323
  • [25] Big data, big changes? The technologies and sources of data used in science classrooms
    Rosenberg, Joshua M.
    Schultheis, Elizabeth H.
    Kjelvik, Melissa K.
    Reedy, Aaron
    Sultana, Omiya
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2022, 53 (05) : 1179 - 1201
  • [26] Statistical Modelling under Epistemic Data Imprecision: Some Results on Estimating Multinomial Distributions and Logistic Regression for Coarse Categorical Data
    Plass, Julia
    Augustin, Thomas
    Cattaneo, Marco E. G. V.
    Schollmeyer, Georg
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 247 - 256
  • [27] Big Data and Data Science in Critical Care
    Sanchez-Pinto, L. Nelson
    Luo, Yuan
    Churpek, Matthew M.
    CHEST, 2018, 154 (05) : 1239 - 1248
  • [28] Some Comments on Big Data and Data Science
    Gu J.
    Zhang L.
    Annals of Data Science, 2014, 1 (3-4) : 283 - 291
  • [29] Big data analytics: transforming data to action
    Bumblauskas, Daniel
    Nold, Herb
    Bumblauskas, Paul
    Igou, Amy
    BUSINESS PROCESS MANAGEMENT JOURNAL, 2017, 23 (03) : 703 - 720
  • [30] Comments on: Data science, big data and statistics
    Delicado, Pedro
    TEST, 2019, 28 (02) : 334 - 337