Inflations for representations of shifted quantum affine algebras

被引:0
作者
Pinet, Theo [1 ,2 ,3 ]
机构
[1] Univ Paris Cite, F-75006 Paris, France
[2] Sorbonne Univ, CNRS, IMJ PRG, F-75006 Paris, France
[3] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
基金
欧盟地平线“2020”;
关键词
Shifted quantum affine algebras; Category O; R; -matrices; Cluster algebras; FINITE-DIMENSIONAL REPRESENTATIONS; CLUSTER ALGEBRAS; QUIVER VARIETIES; COULOMB BRANCHES; Q-CHARACTERS; CATEGORY O; AFFINIZATIONS; SPECTRA; SLICES;
D O I
10.1016/j.aim.2024.110093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a finite-dimensional simple Lie algebra g and let g J subset of g be a Lie subalgebra coming from a Dynkin diagram inclusion. Then, the corresponding restriction functor is not essentially surjective on finite-dimensional simple g J -modules. In this article, we study Finkelberg-Tsymbaliuk's shifted quantum affine algebras U q mu (g) and the associated categories O mu (defined by Hernandez). In particular, we introduce natural subalgebras U q nu (gJ) subset of U q mu ( g ) and obtain a functor RJ from O sh =(R)mu O mu to (R) nu ( U q nu (gJ)-Mod) using the canonical restriction functors. We then establish that RJ is essentially surjective on finite-dimensional simple objects by constructing notable preimages that we call inflations. We conjecture that all simple objects in O sh J (which is the analog of O sh for the subalgebras U q nu (gJ)) admit some inflation and prove this for g of type A-B or g J a direct sum of copies of sl2 and sl3. We finally apply our results to deduce certain R-matrices and examples of cluster structures over Grothendieck rings. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:51
相关论文
共 43 条
  • [1] Quantum Grothendieck rings as quantum cluster algebras
    Bittmann, Lea
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (01): : 161 - 197
  • [2] Coulomb branches of 3d N=4 quiver gauge theories and slices in the affine Grassmannian
    Braverman, Alexander
    Finkelberg, Michael
    Nakajima, Hiraku
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (01) : 75 - 166
  • [3] QUANTUM AFFINE ALGEBRAS
    CHARI, V
    PRESSLEY, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) : 261 - 283
  • [4] Chari V., 1995, REPRESENTATIONS GROU, V16, P59
  • [5] Finite Type Modules and Bethe Ansatz Equations
    Feigin, Boris
    Jimbo, Michio
    Miwa, Tetsuji
    Mukhin, Eugene
    [J]. ANNALES HENRI POINCARE, 2017, 18 (08): : 2543 - 2579
  • [6] Finkelberg M., 2019, Invited Lectures, VII, P1283
  • [7] Finkelberg M, 2019, PROG MATH, V330, P133, DOI 10.1007/978-3-030-23531-4_6
  • [8] Comultiplication for shifted Yangians and quantum open Toda lattice
    Finkelberg, Michael
    Kamnitzer, Joel
    Pham, Khoa
    Rybnikov, Leonid
    Weekes, Alex
    [J]. ADVANCES IN MATHEMATICS, 2018, 327 : 349 - 389
  • [9] Cluster algebras I: Foundations
    Fomin, S
    Zelevinsky, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 497 - 529
  • [10] Cluster algebras IV: Coefficients
    Fomin, Sergey
    Zelevinsky, Andrei
    [J]. COMPOSITIO MATHEMATICA, 2007, 143 (01) : 112 - 164