A Scalable System for Visual Analysis of Ocean Data

被引:0
作者
Jain, Toshit [1 ]
Singh, Upkar [1 ]
Singh, Varun [1 ]
Boda, Vijay Kumar [1 ]
Hotz, Ingrid [1 ,2 ]
Vadhiyar, Sathish S. [3 ]
Vinayachandran, P. N. [4 ]
Natarajan, Vijay [1 ,5 ]
机构
[1] Indian Inst Sci Bengaluru, Dept Comp Sci & Automat CSA, Bengaluru, India
[2] Linkoping Univ, Dept Sci & Technol ITN, Norrkoping, Sweden
[3] Indian Inst Sci Bengaluru, Dept Computat & Data Sci CDS, Bengaluru, India
[4] Indian Inst Sci Bengaluru, Ctr Atmospher & Ocean Sci CAOS, Bengaluru, India
[5] Zuse Inst Berlin, Visual & Data Centr Comp, Berlin, Germany
关键词
interaction; human-computer interfaces; visualization; scientific visualization; MESOSCALE EDDIES; COORDINATE; EDDY; VISUALIZATION;
D O I
10.1111/cgf.15279
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Oceanographers rely on visual analysis to interpret model simulations, identify events and phenomena, and track dynamic ocean processes. The ever increasing resolution and complexity of ocean data due to its dynamic nature and multivariate relationships demands a scalable and adaptable visualization tool for interactive exploration. We introduce pyParaOcean, a scalable and interactive visualization system designed specifically for ocean data analysis. pyParaOcean offers specialized modules for common oceanographic analysis tasks, including eddy identification and salinity movement tracking. These modules seamlessly integrate with ParaView as filters, ensuring a user-friendly and easy-to-use system while leveraging the parallelization capabilities of ParaView and a plethora of inbuilt general-purpose visualization functionalities. The creation of an auxiliary dataset stored as a Cinema database helps address I/O and network bandwidth bottlenecks while supporting the generation of quick overview visualizations. We present a case study on the Bay of Bengal to demonstrate the utility of the system and scaling studies to evaluate the efficiency of the system.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Exploring and visualizing three-dimensional ocean data in the China Digital Ocean Prototype System
    Zhang, Xin
    Luo, Jiancheng
    Dong, Wen
    Hu, Xiaodong
    Gao, Lijing
    [J]. JOURNAL OF COASTAL RESEARCH, 2013, : 1081 - 1085
  • [32] Visual Analysis of Linked Musicological Data with the musiXplora
    Khulusi, Richard
    Focht, Josef
    Jaenicke, Stefan
    [J]. COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2020, 2022, 1474 : 183 - 204
  • [33] Visual Analysis of Sorting and Classification of Multidimensional Data
    Yang, Dongsheng
    Yu, Shidong
    Hao, Ying
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (03)
  • [34] Survey of the Visual Exploration and Analysis of Perfusion Data
    Preim, Bernhard
    Oeltze, Steffen
    Mlejnek, Matej
    Groeller, Eduard
    Hennemuth, Anja
    Behrens, Sarah
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (02) : 205 - 220
  • [35] Effects of Immersion on Visual Analysis of Volume Data
    Laha, Bireswar
    Sensharma, Kriti
    Schiffbauer, James D.
    Bowman, Doug A.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (04) : 597 - 606
  • [36] Visual Analytics for Industrial Sensor Data Analysis
    Langer, Tristan
    Meisen, Tobias
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 584 - 593
  • [37] Discovery and Visual Analysis of Linked Data for Humans
    Sabol, Vedran
    Tschinkel, Gerwald
    Veas, Eduardo
    Hoefler, Patrick
    Mutlu, Belgin
    Granitzer, Michael
    [J]. SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 309 - 324
  • [38] THE PROCEDURES OF VISUAL ANALYSIS FOR MULTIDIMENSIONAL DATA VOLUMES
    Bondarev, A. E.
    [J]. INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2019, 42-2 (W12): : 17 - 21
  • [39] Survey on Visual Analysis of Event Sequence Data
    Guo, Yi
    Guo, Shunan
    Jin, Zhuochen
    Kaul, Smiti
    Gotz, David
    Cao, Nan
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 5091 - 5112
  • [40] Data Type Agnostic Visual Sensitivity Analysis
    Piccolotto, Nikolaus
    Boegl, Markus
    Muehlmann, Christoph
    Nordhausen, Klaus
    Filzmoser, Peter
    Schmidt, Johanna
    Miksch, Silvia
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (01) : 1106 - 1116