On the Decay in the Energy Space of Solutions to the Damped Magnetic Radial Schrödinger Equation with Non-Local Nonlinearities

被引:0
|
作者
Saker, Taim [1 ]
Tarulli, Mirko [1 ,2 ]
Venkov, George [3 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, Sofia 1113, Bulgaria
[2] Amer Univ Bulgaria, Math & Sci Dept, 1 Georgi Izmirliev Sq, Blagoevgrad 2700, Bulgaria
[3] Tech Univ Sofia, Fac Appl Math & Informat, Dept Math Anal & Differential Equat, Sofia 1756, Bulgaria
关键词
nonlinear Schr & ouml; dinger equations; Schr & ouml; dinger operators; scattering theory; non-local nonlinearity; damping; HARTREE-EQUATIONS; WELL-POSEDNESS; SCHRODINGER; SCATTERING;
D O I
10.3390/math12192975
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will explore, in any space dimension d >= 4, the decay in the energy space for the damped magnetic Schr & ouml;dinger equation with non-local nonlinearity and radial initial data in H1(Rd). We will also display new Morawetz identities and corresponding localized Morawetz estimates.
引用
收藏
页数:13
相关论文
共 30 条
  • [1] Energy Scattering for the Unsteady Damped Nonlinear Schrödinger Equation
    Hamouda, Makram
    Majdoub, Mohamed
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (02)
  • [2] On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev–Lorentz spaces
    Vanessa Barros
    Lucas C. F. Ferreira
    Ademir Pastor
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [3] Local energy decay for the damped wave equation
    Bouclet, Jean-Marc
    Royer, Julien
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) : 4538 - 4615
  • [4] Dispersive decay for the energy-critical nonlinear Schrödinger equation
    Kowalski, Matthew
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 392 - 426
  • [5] Multiple non-radial solutions for coupled Schrödinger equations
    Huang, Xiaopeng
    Li, Haoyu
    Wang, Zhi-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 1 - 22
  • [6] On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation
    Fernando Cortez, Manuel
    Jarrin, Oscar
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 365 - 396
  • [7] Scattering for the Radial Schrödinger Equation with Combined Power-type and Choquard-type Nonlinearities
    Ying Wang
    Cheng Bin Xu
    Acta Mathematica Sinica, English Series, 2024, 40 : 1029 - 1041
  • [8] Partial differential systems with non-local nonlinearities: generation and solutions
    Beck, Margaret
    Doikou, Anastasia
    Malham, Simon J. A.
    Stylianidis, Loannis
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [9] Blow-Up of Solutions for the Fourth-Order Schrödinger Equation with Combined Power-Type Nonlinearities
    Zhang, Zaiyun
    Wang, Dandan
    Chen, Jiannan
    Xie, Zihan
    Xu, Chengzhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [10] Non-global solutions for the inhomogeneous nonlinear Schrödinger equation without gauge invariance
    Saanouni, Tarek
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14446 - 14456