Equality Test on Identity-Based Encryption With Cryptographic Reverse Firewalls for Telemedicine Systems

被引:0
作者
Elhabob, Rashad [1 ,2 ]
Eltayieb, Nabeil [1 ,2 ]
Xiong, Hu [1 ]
Kumari, Saru [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Network & Data Secur Key Lab Sichuan Prov, Chengdu 610054, Peoples R China
[2] Karary Univ, Fac Comp Sci & Informat Engn, Khartoum 12304, Sudan
[3] Chaudhary Charan Singh Univ, Dept Math, Meerut 250004, India
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 02期
关键词
Encryption; Telemedicine; Firewalls (computing); Public key; Servers; Medical services; COVID-19; Cloud server; cryptographic reverse firewalls (CRFs); equality test; identity-based; searchable encryption; telemedicine systems; PUBLIC-KEY ENCRYPTION; INTERNET; SCHEME;
D O I
10.1109/JIOT.2024.3466958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The emergence of the COVID-Omicron XBB variant has intensified the need for wireless body area networks (WBANs) in telemedicine, underscoring their critical role in remote patient monitoring and demanding robust security solutions to protect health data and patient privacy. To address this need, we introduce the equality test on identity-based encryption with cryptographic reverse firewalls (ET-IBE-CRFs). This protocol allows the medical server in a telemedicine system to execute the equality test on the encrypted data and retrieve the result without knowing any relevant information about the ciphertext. By incorporating cryptographic reverse firewalls (CRFs), the ET-IBE-CRF protocol effectively counters offline message recovery attacks (OMRAs) and algorithm substitution attacks (ASAs) without requiring secure communication channels. Our evaluation indicates that ET-IBE-CRF not only meets the strict requirements for confidentiality and privacy in telemedicine applications but also maintains high efficiency. This makes it well-suited for high-performance telemedicine systems.
引用
收藏
页码:2106 / 2121
页数:16
相关论文
共 36 条
[1]  
[Anonymous], 2024, La Oms Alerta de que Llegar
[2]  
Barker E. B., 2007, document NIST SP 800-57 Part 1 Rev. 5
[3]  
Bellare M, 2014, LECT NOTES COMPUT SC, V8616, P1, DOI 10.1007/978-3-662-44371-2_1
[4]  
Boneh D, 2004, LECT NOTES COMPUT SC, V3027, P506
[5]   Identity-based encryption from the Weil pairing [J].
Boneh, D ;
Franklin, M .
SIAM JOURNAL ON COMPUTING, 2003, 32 (03) :586-615
[6]   Cryptographic Reverse Firewall via Malleable Smooth Projective Hash Functions [J].
Chen, Rongmao ;
Mu, Yi ;
Yang, Guomin ;
Susilo, Willy ;
Guo, Fuchun ;
Zhang, Mingwu .
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2016, PT I, 2016, 10031 :844-876
[7]   Message Transmission with Reverse Firewalls-Secure Communication on Corrupted Machines [J].
Dodis, Yevgeniy ;
Mironov, Ilya ;
Stephens-Davidowitz, Noah .
ADVANCES IN CRYPTOLOGY - CRYPTO 2016, PT I, 2016, 9814 :341-372
[8]   Pairing-free certificateless public key encryption with equality test for Internet of Vehicles [J].
Elhabob, Rashad ;
Taha, Mazin ;
Xiong, Hu ;
Khan, Muhammad Khurram ;
Kumari, Saru ;
Chaudhary, Pradeep .
COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
[9]   PKE-ET-HS: Public Key Encryption with Equality Test for Heterogeneous Systems in IoT [J].
Elhabob, Rashad ;
Zhao, Yanan ;
Hassan, Alzubair ;
Xiong, Hu .
WIRELESS PERSONAL COMMUNICATIONS, 2020, 113 (01) :313-335
[10]   Public Key Encryption with Equality Test for Heterogeneous Systems in Cloud Computing [J].
Elhabob, Rashad ;
Zhao, Yanan ;
Sella, Iva ;
Xiong, Hu .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (09) :4742-4770