A Simple Wide Range Approximation of Symmetric Binomial Distribution

被引:0
|
作者
Szabados, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyetem Rkp 3,Hep 5, H-1521 Budapest, Hungary
关键词
wide range; approximation; binomial distribution;
D O I
10.3390/e27010021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper gives a wide range, uniform, local approximation of symmetric binomial distribution. The result clearly shows how one has to modify the classical de Moivre-Laplace normal approximation in order to give an estimate at the tail as well as to minimize the relative error.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Exact test of goodness of fit for binomial distribution
    Benchong Li
    Liya Fu
    Statistical Papers, 2018, 59 : 851 - 860
  • [42] Behavior of Binomial Distribution near Its Median
    N. A. Volkov
    D. I. Dmitriev
    M. E. Zhukovskii
    Doklady Mathematics, 2022, 105 : 89 - 91
  • [43] Behavior of Binomial Distribution near Its Median
    Volkov, N. A.
    Dmitriev, D. I.
    Zhukovskii, M. E.
    DOKLADY MATHEMATICS, 2022, 105 (02) : 89 - 91
  • [44] Epistemic Configurations and Holistic Meaning of Binomial Distribution
    Fernandez Coronado, Nicolas Alonso
    Garcia-Garcia, Jaime, I
    Arredondo, Elizabeth H.
    Araya Naveas, Ismael Andres
    MATHEMATICS, 2022, 10 (10)
  • [45] ON THE BOUND OF PROXIMITY OF THE BINOMIAL DISTRIBUTION TO THE NORMAL ONE
    Nagaev, S. V.
    Chebotarev, V. I.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (02) : 213 - 239
  • [46] IMPROVED KOLMOGOROV INEQUALITIES FOR THE BINOMIAL-DISTRIBUTION
    TURNER, DW
    YOUNG, DM
    SEAMAN, JW
    STATISTICS & PROBABILITY LETTERS, 1992, 13 (03) : 223 - 227
  • [47] On the bound of proximity of the binomial distribution to the normal one
    S. V. Nagaev
    V. I. Chebotarev
    Doklady Mathematics, 2011, 83 : 19 - 21
  • [48] Approximation by matrices with simple spectra
    Gumerov R.N.
    Vidunov S.I.
    Lobachevskii Journal of Mathematics, 2016, 37 (3) : 240 - 243
  • [49] A non-uniform bound on binomial approximation with w-functions
    Teerapabolarn, K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (23) : 8391 - 8405
  • [50] Expectation identity for the binomial distribution and its application in the calculations of high-order binomial moments
    Zhang, Ying-Ying
    Rong, Teng-Zhong
    Li, Man-Man
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (22) : 5467 - 5476