A Simple Wide Range Approximation of Symmetric Binomial Distribution

被引:0
|
作者
Szabados, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyetem Rkp 3,Hep 5, H-1521 Budapest, Hungary
关键词
wide range; approximation; binomial distribution;
D O I
10.3390/e27010021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper gives a wide range, uniform, local approximation of symmetric binomial distribution. The result clearly shows how one has to modify the classical de Moivre-Laplace normal approximation in order to give an estimate at the tail as well as to minimize the relative error.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] The binomial distribution with dependent Bernoulli trials
    Van der Geest, PAG
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (02) : 141 - 154
  • [32] BINOMIAL-DISCRETE LINDLEY DISTRIBUTION
    Kus, C.
    Akdogan, Y.
    Asgharzadeh, A.
    Kinaci, I.
    Karakaya, K.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 401 - 411
  • [33] Application the Binomial Distribution, Hypergeometric Distribution and Poisson Probability Distribution in Accounting
    Kubascikova, Zuzana
    FINANCIAL MANAGEMENT OF FIRMS AND FINANCIAL INSTITUTIONS: 11TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, 2017, : 455 - 458
  • [34] A Simple Proof of the Binomial Theorem Using Differential Calculus
    Hwang, Leng-Cheng
    AMERICAN STATISTICIAN, 2009, 63 (01) : 43 - 44
  • [35] The Poisson Binomial Distribution- Old & New
    Tang, Wenpin
    Tang, Fengmin
    ENERGY AND BUILDINGS, 2023, 282 : 108 - 119
  • [36] Exact test of goodness of fit for binomial distribution
    Li, Benchong
    Fu, Liya
    STATISTICAL PAPERS, 2018, 59 (03) : 851 - 860
  • [37] Corrected Probability Mass Function of the Binomial Distribution
    Ghosh P.
    Resonance, 2021, 26 (12) : 1721 - 1724
  • [38] Variance as a proxy for risk: the case of the binomial distribution
    Sheldon, A
    Sproule, R
    STATISTICIAN, 1997, 46 (03): : 317 - 322
  • [39] Confidence intervals for two sample binomial distribution
    Brown, L
    Li, XF
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 130 (1-2) : 359 - 375
  • [40] Two limit theorems for Markov binomial distribution
    Sliogere, Jurate
    Cekanavicius, Vydas
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (03) : 451 - 463