A Simple Wide Range Approximation of Symmetric Binomial Distribution

被引:0
|
作者
Szabados, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyetem Rkp 3,Hep 5, H-1521 Budapest, Hungary
关键词
wide range; approximation; binomial distribution;
D O I
10.3390/e27010021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper gives a wide range, uniform, local approximation of symmetric binomial distribution. The result clearly shows how one has to modify the classical de Moivre-Laplace normal approximation in order to give an estimate at the tail as well as to minimize the relative error.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Partial sums of analytic functions defined by binomial distribution and negative binomial distribution
    Nawaz, Rubab
    Zainab, Saira
    Tchier, Fairouz
    Xin, Qin
    Saliu, Afis
    Malik, Sarfraz Nawaz
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01): : 554 - 572
  • [22] A refinement of the binomial distribution using the quantum binomial theorem
    Sills, Andrew V.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (02) : 294 - 308
  • [23] A simple and probabilistic proof of the binomial theorem
    Rosalsky, Andrew
    AMERICAN STATISTICIAN, 2007, 61 (02) : 161 - 162
  • [24] The Binomial and Negative Binomial Distribution in Discrete Time Markov Chains
    Frank, L.
    MARKOV PROCESSES AND RELATED FIELDS, 2017, 23 (03) : 377 - 400
  • [25] On the generalization of negative binomial distribution
    Shishebor, Z
    Towhidi, M
    STATISTICS & PROBABILITY LETTERS, 2004, 66 (02) : 127 - 133
  • [26] Binomial Approximation to Locally Dependent Collateralized Debt Obligations
    Kumar, Amit N.
    Vellaisamy, P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [27] A normal approximation theorem in comparing two binomial distributions
    Cai, HY
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (01) : 83 - 89
  • [28] Binomial Approximation to Locally Dependent Collateralized Debt Obligations
    Amit N. Kumar
    P. Vellaisamy
    Methodology and Computing in Applied Probability, 2023, 25
  • [29] An exponentiated exponential binomial distribution with application
    Bakouch, Hassan S.
    Ristic, Miroslav M.
    Asgharzadeh, A.
    Esmaily, L.
    Al-Zahrani, Bander M.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (06) : 1067 - 1081
  • [30] Refined Kolmogorov inequalities for the binomial distribution
    Antonini, Rita Giuliano
    Kruglov, Victor M.
    Volodin, Andrei
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 149 : 131 - 150