Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement

被引:5
作者
Kang, Sicong [1 ,2 ]
Gao, Shuaibo [1 ,2 ]
Wu, Wenhui [1 ,2 ]
Wang, Xu [3 ]
Wang, Shuoyao [1 ]
Qiu, Guoping [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Image restoration; Reflectivity; Diffusion models; Feature extraction; Image color analysis; Image enhancement; Low-light image enhancement; diffusion model; retinex decomposition; RETINEX;
D O I
10.1109/TCSVT.2024.3441713
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Through formulating the image restoration as a generation problem, the conditional diffusion model has been applied to low-light image enhancement (LIE) to restore the details in dark regions. However, in the previous diffusion model based LIE methods, the conditions used for guiding generation are degraded images, such as low-light image, signal-to-noise ratio map and color map, which suffer from severe degradation and are simply fed into diffusion model by rigidly concatenating with the noise. To avoid using degraded conditions resulting in sub-optimal performance in recovering details and enhancing brightness, we use the image intrinsic components originating from the Retinex model as guidance, whose multi-scale features are flexibly integrated into the diffusion model, and propose a novel conditional diffusion model for LIE. Specifically, the input low-light image is decomposed into reflectance and illumination by a Retinex decomposition module, where two components contain abundant physical property and lighting conditions of the scene. Then, we extract the latent features from two conditions through a component-dependent feature extraction module, which is designed according to the physical property of components. Finally, instead of previous rigid concatenation manner, a well-designed feature fusion mechanism is equipped to adaptively embed generative conditions into diffusion model. Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods, and is capable of effectively restoring the local details while brightening the dark regions. Our codes are available at https://github.com/Knossosc/ICCDiff.
引用
收藏
页码:13244 / 13256
页数:13
相关论文
共 52 条
[1]   Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images [J].
Cai, Jianrui ;
Gu, Shuhang ;
Zhang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :2049-2062
[2]   Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement [J].
Cai, Yuanhao ;
Bian, Hao ;
Lin, Jing ;
Wang, Haoqian ;
Timofte, Radu ;
Zhang, Yulun .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :12470-12479
[3]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[4]  
Ermon S., 2021, P INT C LEARN REPR
[5]   You Do Not Need Additional Priors or Regularizers in Retinex-based Low-light Image Enhancement [J].
Fu, Huiyuan ;
Zheng, Wenkai ;
Meng, Xiangyu ;
Wang, Xin ;
Wang, Chuanming ;
Ma, Huadong .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :18125-18134
[6]   Learning a Simple Low-light Image Enhancer from Paired Low-light Instances [J].
Fu, Zhenqi ;
Yang, Yan ;
Tu, Xiaotong ;
Huang, Yue ;
Ding, Xinghao ;
Ma, Kai-Kuang .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :22252-22261
[7]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[8]   Low-light Image Enhancement via Breaking Down the Darkness [J].
Guo, Xiaojie ;
Hu, Qiming .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (01) :48-66
[9]   LIME: Low-Light Image Enhancement via Illumination Map Estimation [J].
Guo, Xiaojie ;
Li, Yu ;
Ling, Haibin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) :982-993
[10]   R2RNet: Low-light image enhancement via Real-low to Real-normal Network [J].
Hai, Jiang ;
Xuan, Zhu ;
Yang, Ren ;
Hao, Yutong ;
Zou, Fengzhu ;
Lin, Fang ;
Han, Songchen .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90