'Applications of machine learning in liposomal formulation and development'

被引:2
作者
Matalqah, Sina [1 ]
Lafi, Zainab [1 ]
Mhaidat, Qasim [2 ]
Asha, Nisreen [3 ]
Asha, Sara Yousef [4 ]
机构
[1] Al Ahliyya Amman Univ, Fac Pharm, Pharmacol & Diagnost Res Ctr, Amman, Jordan
[2] King Hussein Canc Ctr Amman, Amman, Jordan
[3] Univ Oklahoma Hlth Sci, Oklahoma City, OK USA
[4] Univ Jordan, Sch Med, Amman, Jordan
关键词
Machine learning; liposomal formulation; therapeutic optimization; drug delivery systems; computational modelling; nanomedicine; DRUG-DELIVERY; RELEASE; SYSTEMS; ENCAPSULATION; CHOLESTEROL; STABILITY;
D O I
10.1080/10837450.2024.2448777
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles. Additionally, the integration of ML enhances therapeutic outcomes by enabling precision-targeted delivery and minimizing side effects. This review presents current breakthroughs, challenges, and future opportunities in applying ML to liposomal systems, aiming to improve therapeutic efficacy and patient outcomes in various disease treatments.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 86 条
[31]   Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy [J].
Fleuren, Lucas M. ;
Klausch, Thomas L. T. ;
Zwager, Charlotte L. ;
Schoonmade, Linda J. ;
Guo, Tingjie ;
Roggeveen, Luca F. ;
Swart, Eleonora L. ;
Girbes, Armand R. J. ;
Thoral, Patrick ;
Ercole, Ari ;
Hoogendoorn, Mark ;
Elbers, Paul W. G. .
INTENSIVE CARE MEDICINE, 2020, 46 (03) :383-400
[32]  
Fortino V., 2013, SEQUENCE ANAL BIOINF
[33]   Lipid Polymorphisms and Membrane Shape [J].
Frolov, Vadim A. ;
Shnyrova, Anna V. ;
Zimmerberg, Joshua .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2011, 3 (11)
[34]  
Gao XJ., 2024, DRUG DELI
[35]  
Gholap Amol D, 2024, Comput Biol Med, V178, P108702, DOI [10.1016/j.compbiomed.2024.108702, 10.1016/j.compbiomed.2024.108702]
[36]  
Giannopoulos-Dimitriou A., 2024, LIPOSOME STABILITY I, P89
[37]   Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols [J].
Giordani, Stefano ;
Marassi, Valentina ;
Zattoni, Andrea ;
Roda, Barbara ;
Reschiglian, Pierluigi .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2023, 236
[38]   Design of liposomes as drug delivery system for therapeutic applications [J].
Guimaraes, Diana ;
Cavaco-Paulo, Artur ;
Nogueira, Eugenia .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 601
[39]   Artificial intelligence to deep learning: machine intelligence approach for drug discovery [J].
Gupta, Rohan ;
Srivastava, Devesh ;
Sahu, Mehar ;
Tiwari, Swati ;
Ambasta, Rashmi K. ;
Kumar, Pravir .
MOLECULAR DIVERSITY, 2021, 25 (03) :1315-1360
[40]   Predicting liposome formulations by the integrated machine learning and molecular modeling approaches [J].
Han, Run ;
Ye, Zhuyifan ;
Zhang, Yunsen ;
Cheng, Yaxin ;
Zheng, Ying ;
Ouyang, Defang .
ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 18 (03)