'Applications of machine learning in liposomal formulation and development'

被引:2
作者
Matalqah, Sina [1 ]
Lafi, Zainab [1 ]
Mhaidat, Qasim [2 ]
Asha, Nisreen [3 ]
Asha, Sara Yousef [4 ]
机构
[1] Al Ahliyya Amman Univ, Fac Pharm, Pharmacol & Diagnost Res Ctr, Amman, Jordan
[2] King Hussein Canc Ctr Amman, Amman, Jordan
[3] Univ Oklahoma Hlth Sci, Oklahoma City, OK USA
[4] Univ Jordan, Sch Med, Amman, Jordan
关键词
Machine learning; liposomal formulation; therapeutic optimization; drug delivery systems; computational modelling; nanomedicine; DRUG-DELIVERY; RELEASE; SYSTEMS; ENCAPSULATION; CHOLESTEROL; STABILITY;
D O I
10.1080/10837450.2024.2448777
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles. Additionally, the integration of ML enhances therapeutic outcomes by enabling precision-targeted delivery and minimizing side effects. This review presents current breakthroughs, challenges, and future opportunities in applying ML to liposomal systems, aiming to improve therapeutic efficacy and patient outcomes in various disease treatments.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 86 条
[1]  
Abu Lila AS, 2017, BIOL PHARM BULL, V40, P1, DOI 10.1248/bpb.b16-00624
[2]   Liposome: composition, characterisation, preparation, and recent innovation in clinical applications [J].
Ahmed, Kamel S. ;
Hussein, Saied A. ;
Ali, Abdelmoneim H. ;
Korma, Sameh A. ;
Qiu Lipeng ;
Chen Jinghua .
JOURNAL OF DRUG TARGETING, 2019, 27 (07) :742-761
[3]   Deep learning modelling techniques: current progress, applications, advantages, and challenges [J].
Ahmed, Shams Forruque ;
Alam, Md. Sakib Bin ;
Hassan, Maruf ;
Rozbu, Mahtabin Rodela ;
Ishtiak, Taoseef ;
Rafa, Nazifa ;
Mofijur, M. ;
Ali, A. B. M. Shawkat ;
Gandomi, Amir H. .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) :13521-13617
[4]  
Alamro MA, 2024, BIOMED PHARMACOL J, V17, P1177, DOI [10.13005/bpj/2932, DOI 10.13005/bpj/2932, 10.13005/bpj/2932, DOI 10.13005/BPJ/2932]
[5]  
Allateef Ali, 2024, Journal of Applied Pharmaceutical Science, V14, P208, DOI [10.7324/japs.2024.181335, 10.7324/JAPS.2024.181335]
[6]   Liposomal drug delivery systems: From concept to clinical applications [J].
Allen, Theresa M. ;
Cullis, Pieter R. .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) :36-48
[7]   Quality by Design Approach in Liposomal Formulations: Robust Product Development [J].
Alshaer, Walhan ;
Nsairat, Hamdi ;
Lafi, Zainab ;
Hourani, Omar M. ;
Al-Kadash, Abdulfattah ;
Esawi, Ezaldeen ;
Alkilany, Alaaldin M. .
MOLECULES, 2023, 28 (01)
[8]   Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma [J].
Alshaer, Walhan ;
Zraikat, Manar ;
Amer, Amer ;
Nsairat, Hamdi ;
Lafi, Zainab ;
Alqudah, Dana A. ;
Al Qadi, Enas ;
Alsheleh, Tasneem ;
Odeh, Fadwa ;
Alkaraki, Arwa ;
Zihlif, Malek ;
Bustanji, Yasser ;
Fattal, Elias ;
Awidi, Abdalla .
RSC ADVANCES, 2019, 9 (53) :30976-30988
[9]   Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence [J].
Alshawwa, Samar Zuhair ;
Kassem, Abeer Ahmed ;
Farid, Ragwa Mohamed ;
Mostafa, Shaimaa Khamis ;
Labib, Gihan Salah .
PHARMACEUTICS, 2022, 14 (04)
[10]   The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations [J].
Anderson, M ;
Omri, A .
DRUG DELIVERY, 2004, 11 (01) :33-39