SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS

被引:0
|
作者
Rao, Nadeem [1 ]
Yadav, Avinash Kumar [2 ]
Shahzad, Mohammad [3 ]
Rani, Mamta [4 ]
机构
[1] Chandigarh Univ, Univ Ctr Res & Dev, Dept Math, Mohali 140413, Punjab, India
[2] Galgotias Coll Engn & Technol, Dept Appl Sci, Greater Noida 201310, UP, India
[3] Chandigarh Univ, Dept Math, Mohali 140413, Punjab, India
[4] World Coll Technol & Management, WCTM Campus, Gurgaon, Delhi Ncr, India
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2025年
关键词
Bernoulli polynomials; rate of convergence; Voronovskaja-theorem; modulus of smoothness; order of approximation; APPROXIMATION PROPERTIES; BERNSTEIN; CONVERGENCE; INTERPOLATION;
D O I
10.3934/mfc.2025002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This research work introduces a new connection of Sz<acute accent>asz operators with adjoint Bernoulli's polynomials as a new sequence of linear positive operators denoted by { S r,lambda ( .; .)}infinity 1. Further, convergence properties of these sequences of operators, i.e., { S r,lambda ( .; .)}infinity 1, are investigated in various functional spaces with the aid of the Korovkin theorem, a Voronovskaja type theorem, the first-order modulus of continuity, the second-order modulus of continuity, Peetre's K-functional, and the Lipschitz condition, etc. In the last section, we extend our research for the bivariate case of these sequences of operators, and their uniform rate of approximation and order of approximation are investigated in different functional spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Generalized Szasz-Kantorovich Type Operators
    Kajla, Arun
    Araci, Serkan
    Goyal, Meenu
    Acikgoz, Mehmet
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 403 - 413
  • [42] Approximation by Szasz–Kantorovich type operators associated with d-symmetric d-orthogonal polynomials of Brenke type
    Ajay Kumar
    Abhishek Senapati
    Tanmoy Som
    The Journal of Analysis, 2024, 32 : 555 - 571
  • [43] Generalization of Szasz operators involving multiple Sheffer polynomials
    Ali, Mahvish
    Paris, Richard B.
    JOURNAL OF ANALYSIS, 2023, 31 (01) : 1 - 19
  • [44] Szasz-Durrmeyer operators involving Boas-Buck polynomials of blending type
    Sidharth, Manjari
    Agrawal, P. N.
    Araci, Serkan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [45] Approximation properties of (p, q) bivariate Szasz Beta type operators
    Khan, Shuzaat Ali
    Rao, Nadeem
    Khan, Taqseer
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 382 - 399
  • [46] Stancu type generalization of the Favard-Szasz operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    APPLIED MATHEMATICS LETTERS, 2010, 23 (12) : 1479 - 1482
  • [47] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [48] Chlodowsky type (λ, q)-Bernstein-Stancu operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 75 - 101
  • [49] Approximation with Chlodowsky variant of Kantorovich-Stancu-operators employing associated λ-polynomials
    Raza, Nusrat
    Kumar, Manoj
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [50] Approximation by Stancu-Chlodowsky type λ-Bernstein operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 97 - 110