SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS

被引:0
|
作者
Rao, Nadeem [1 ]
Yadav, Avinash Kumar [2 ]
Shahzad, Mohammad [3 ]
Rani, Mamta [4 ]
机构
[1] Chandigarh Univ, Univ Ctr Res & Dev, Dept Math, Mohali 140413, Punjab, India
[2] Galgotias Coll Engn & Technol, Dept Appl Sci, Greater Noida 201310, UP, India
[3] Chandigarh Univ, Dept Math, Mohali 140413, Punjab, India
[4] World Coll Technol & Management, WCTM Campus, Gurgaon, Delhi Ncr, India
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2025年
关键词
Bernoulli polynomials; rate of convergence; Voronovskaja-theorem; modulus of smoothness; order of approximation; APPROXIMATION PROPERTIES; BERNSTEIN; CONVERGENCE; INTERPOLATION;
D O I
10.3934/mfc.2025002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This research work introduces a new connection of Sz<acute accent>asz operators with adjoint Bernoulli's polynomials as a new sequence of linear positive operators denoted by { S r,lambda ( .; .)}infinity 1. Further, convergence properties of these sequences of operators, i.e., { S r,lambda ( .; .)}infinity 1, are investigated in various functional spaces with the aid of the Korovkin theorem, a Voronovskaja type theorem, the first-order modulus of continuity, the second-order modulus of continuity, Peetre's K-functional, and the Lipschitz condition, etc. In the last section, we extend our research for the bivariate case of these sequences of operators, and their uniform rate of approximation and order of approximation are investigated in different functional spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Bezier Variant of the Szasz-Durrmeyer Type Operators Based on the Poisson-Charlier Polynomials
    Kajla, Arun
    Miclaus, Dan
    FILOMAT, 2020, 34 (10) : 3265 - 3273
  • [32] Hecke operators type and generalized Apostol-Bernoulli polynomials
    Aykut Ahmet Aygunes
    Abdelmejid Bayad
    Yilmaz Simsek
    Fixed Point Theory and Applications, 2013
  • [33] Hecke operators type and generalized Apostol-Bernoulli polynomials
    Aygunes, Aykut Ahmet
    Bayad, Abdelmejid
    Simsek, Yilmaz
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [34] Rate of convergence by Kantorovich-Szasz type operators based on Brenke type polynomials
    Garg, Tarul
    Agrawal, Purshottam Narain
    Araci, Serkan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [35] On a generalization of Szasz operators by multiple Appell polynomials
    Varma, Serhan
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 361 - 369
  • [36] Convergence Rate of Szasz Operators Involving Boas-Buck-Type Polynomials
    Yilik, Ozlem Oksuzer
    Garg, Tarul
    Agrawal, P. N.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 13 - 22
  • [37] The q-Chlodowsky and q-Szasz-Durrmeyer Hybrid Operators on Weighted Spaces
    Cicek, Harun
    Izgi, Aydin
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [38] ON CONVERGENCE OF CHLODOWSKY-TYPE MKZD OPERATORS
    Karsli, Harun
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2008, 57 (01): : 1 - 12
  • [39] Szasz-Mirakjan-Durrmeyer operators defined by multiple Appell polynomials
    Abel, Ulrich
    Agratini, Octavian
    Paltanea, Radu
    POSITIVITY, 2025, 29 (01)
  • [40] Twisted vertex operators and Bernoulli polynomials
    Doyon, B.
    Lepowsky, J.
    Milas, A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (02) : 247 - 307