SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS

被引:0
|
作者
Rao, Nadeem [1 ]
Yadav, Avinash Kumar [2 ]
Shahzad, Mohammad [3 ]
Rani, Mamta [4 ]
机构
[1] Chandigarh Univ, Univ Ctr Res & Dev, Dept Math, Mohali 140413, Punjab, India
[2] Galgotias Coll Engn & Technol, Dept Appl Sci, Greater Noida 201310, UP, India
[3] Chandigarh Univ, Dept Math, Mohali 140413, Punjab, India
[4] World Coll Technol & Management, WCTM Campus, Gurgaon, Delhi Ncr, India
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2025年
关键词
Bernoulli polynomials; rate of convergence; Voronovskaja-theorem; modulus of smoothness; order of approximation; APPROXIMATION PROPERTIES; BERNSTEIN; CONVERGENCE; INTERPOLATION;
D O I
10.3934/mfc.2025002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This research work introduces a new connection of Sz<acute accent>asz operators with adjoint Bernoulli's polynomials as a new sequence of linear positive operators denoted by { S r,lambda ( .; .)}infinity 1. Further, convergence properties of these sequences of operators, i.e., { S r,lambda ( .; .)}infinity 1, are investigated in various functional spaces with the aid of the Korovkin theorem, a Voronovskaja type theorem, the first-order modulus of continuity, the second-order modulus of continuity, Peetre's K-functional, and the Lipschitz condition, etc. In the last section, we extend our research for the bivariate case of these sequences of operators, and their uniform rate of approximation and order of approximation are investigated in different functional spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Statistical Approximation of Szasz Type Operators Based on Charlier Polynomials
    Kajla, Arun
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (04): : 679 - 688
  • [22] Approximation by a Kantorovich Variant of Szasz Operators Based on Brenke-Type Polynomials
    Oksuzer, Ozlem
    Karsli, Harun
    Tasdelen, Fatma
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3327 - 3340
  • [23] Approximation Properties of Szasz Type Operators Involving Charlier Polynomials
    Ari, Didem Aydin
    FILOMAT, 2017, 31 (02) : 479 - 487
  • [24] CONVERGENCE OF DERIVATIVE OF SZASZ TYPE OPERATORS INVOLVING CHARLIER POLYNOMIALS
    Agrawal, Purshottam N.
    Sinha, Thakur Ashok K.
    Sharma, Avinash
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (01): : 1 - 15
  • [25] Szasz Type Operators Involving Charlier Polynomials and Approximation Properties
    Al-Abied, A. A. H.
    Mursaleen, M. Ayman
    Mursaleen, M.
    FILOMAT, 2021, 35 (15) : 5149 - 5159
  • [26] Approximation by Szasz Type Operators Involving Apostol-Genocchi Polynomials
    Menekse Yilmaz, Mine
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01): : 287 - 297
  • [27] Approximation by Szasz-Kantorovich type operators associated with d-symmetric d-orthogonal polynomials of Brenke type
    Kumar, Ajay
    Senapati, Abhishek
    Som, Tanmoy
    JOURNAL OF ANALYSIS, 2024, 32 (01) : 555 - 571
  • [28] Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials
    Uğur Kadak
    Vishnu Narayan Mishra
    Shikha Pandey
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1443 - 1462
  • [29] THE FAMILY OF SZaSZ-DURRMEYER TYPE OPERATORS INVOLVING CHARLIER POLYNOMIALS
    Deo, Naokant
    Pratap, Ram
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (03): : 431 - 443
  • [30] Generalized Szasz-Mirakyan operators involving Brenke type polynomials
    Khatri, Kejal
    Mishra, Vishnu Narayan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 324 : 228 - 238