SZaSZ CHLODOWSKY TYPE OPERATORS COUPLING ADJOINT BERNOULLI'S POLYNOMIALS

被引:0
作者
Rao, Nadeem [1 ]
Yadav, Avinash Kumar [2 ]
Shahzad, Mohammad [3 ]
Rani, Mamta [4 ]
机构
[1] Chandigarh Univ, Univ Ctr Res & Dev, Dept Math, Mohali 140413, Punjab, India
[2] Galgotias Coll Engn & Technol, Dept Appl Sci, Greater Noida 201310, UP, India
[3] Chandigarh Univ, Dept Math, Mohali 140413, Punjab, India
[4] World Coll Technol & Management, WCTM Campus, Gurgaon, Delhi Ncr, India
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2025年
关键词
Bernoulli polynomials; rate of convergence; Voronovskaja-theorem; modulus of smoothness; order of approximation; APPROXIMATION PROPERTIES; BERNSTEIN; CONVERGENCE; INTERPOLATION;
D O I
10.3934/mfc.2025002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This research work introduces a new connection of Sz<acute accent>asz operators with adjoint Bernoulli's polynomials as a new sequence of linear positive operators denoted by { S r,lambda ( .; .)}infinity 1. Further, convergence properties of these sequences of operators, i.e., { S r,lambda ( .; .)}infinity 1, are investigated in various functional spaces with the aid of the Korovkin theorem, a Voronovskaja type theorem, the first-order modulus of continuity, the second-order modulus of continuity, Peetre's K-functional, and the Lipschitz condition, etc. In the last section, we extend our research for the bivariate case of these sequences of operators, and their uniform rate of approximation and order of approximation are investigated in different functional spaces.
引用
收藏
页数:16
相关论文
共 45 条
[1]   Voronovskaya type results for Bernstein-Chlodovsky operators preserving e-2x [J].
Acar, Tuncer ;
Cappelletti Montano, Mirella ;
Garrancho, Pedro ;
Leonessa, Vita .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
[2]  
Acar T, 2019, B BELG MATH SOC-SIM, V26, P681
[3]   APPROXIMATION PROPERTIES OF TWO DIMENSIONAL BERNSTEIN-STANCU-CHLODOWSKY OPERATORS [J].
Acar, Tuncer ;
Aral, Ali .
MATEMATICHE, 2013, 68 (02) :15-31
[4]   (p,q)-Generalization of Szasz-Mirakyan operators [J].
Acar, Tuncer .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2685-2695
[5]  
Altomare F., 1994, DEGRUYTER STUDIES MA, V17
[6]  
Appell P., 1880, Ann. Sci. Ecole. Norm. Sup, V9, P119, DOI [10.24033/asens.186, DOI 10.24033/ASENS.186]
[7]   Weighted Approximation by New Bernstein-Chlodowsky-Gadjiev Operators [J].
Aral, Ali ;
Acar, Tuncer .
FILOMAT, 2013, 27 (02) :371-380
[8]   Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators [J].
Aslan, Resat .
KUWAIT JOURNAL OF SCIENCE, 2024, 51 (01)
[9]   Hermite polynomials linking Szász-Durrmeyer operators [J].
Ayman-Mursaleen, Mohammad ;
Heshamuddin, Md. ;
Rao, Nadeem ;
Sinha, Brijesh Kumar ;
Yadav, Avinash Kumar .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04)
[10]   Approximation by the modified λ-Bernstein-polynomial in terms of basis function [J].
Ayman-Mursaleen, Mohammad ;
Nasiruzzaman, Md. ;
Rao, Nadeem ;
Dilshad, Mohammad ;
Nisar, Kottakkaran Sooppy .
AIMS MATHEMATICS, 2024, 9 (02) :4409-4426