Tailoring the Solid Electrolyte Interphase Composition on Lithium Metal Anodes by the Choice of Ionic Liquid during Mechanochemical Modification

被引:1
作者
Wellmann, Julia [1 ]
Hepp, Marco [2 ]
Ogolla, Charles Otieno [2 ]
Mohrhardt, Marvin [1 ]
Wankmiller, Bjoern [3 ]
Lennartz, Peter [1 ]
Rodehorst, Uta [4 ]
Hansen, Michael Ryan [3 ]
Winter, Martin [1 ,4 ]
Brunklaus, Gunther [1 ]
Butz, Benjamin [2 ]
Paillard, Elie [5 ]
机构
[1] Forschungszentrum Julich IMD-4, Helmholtz Inst Munster, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Siegen, Micro & Nanoanalyt Grp, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
[3] Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[4] Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[5] Politecn Milan, DOE, Via Lambruschini 4, I-20156 Milan, Italy
关键词
Ionic liquids; lithium metal anodes; lithium metal batteries; mechanochemical modification; solid electrolyte interphase; ELECTROCHEMICAL PROPERTIES; PHYSICOCHEMICAL PROPERTIES; ELECTRODEPOSITION; BEHAVIOR; SURFACE; SEI;
D O I
10.1002/admi.202500034
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) have a great potential to become widely commercialized. However, an improved solid electrolyte interphase (SEI) is needed to enable safe long-term cycling. Here, further a mechanochemical modification method is developed, where lithium metal is roll-pressed in contact with ionic liquids (ILs). The choice of IL allows tailoring the composition and thickness of the SEI, examined via X-ray photoelectron spectroscopy and cryo transmission electronic microscopy, to tune its properties and enable low overvoltage, smooth deposit morphology, and cycling at high current densities. Among the examined ILs, N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr(14)FSI) provides the best results, facilitating stable cycling in a carbonate-based electrolyte at current densities up to 10 mA cm(-2), which results from the suppression of dendrite formation and electrolyte consumption presumably due to a better lithium ion conductivity and homogeneity of the SEI. Furthermore, the modified lithium metal anodes show a good compatibility with NMC cathodes, which is crucial for high-voltage LMB applications. Finally, modified lithium anodes are used in combination with a ternary solid polymer electrolyte, showing also in this context, a much-improved cycling performance.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids [J].
Appetecchi, Giovanni B. ;
Montanino, Maria ;
Zane, Daniela ;
Carewska, Maria ;
Alessandrini, Fabrizio ;
Passerini, Stefano .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1325-1332
[2]   Local superconcentration via solvating ionic liquid electrolytes for safe 4.3V lithium metal batteries [J].
Atik, Jaschar ;
Winter, Martin ;
Paillard, Elie .
ELECTROCHIMICA ACTA, 2022, 415
[3]   Ionic liquid plasticizers comprising solvating cations for lithium metal polymer batteries [J].
Atik, Jaschar ;
Thienenkamp, Johannes Helmut ;
Brunklaus, Gunther ;
Winter, Martin ;
Paillard, Elie .
ELECTROCHIMICA ACTA, 2021, 398
[4]   Cation-Assisted Lithium-Ion Transport for High-Performance PEO-based Ternary Solid Polymer Electrolytes [J].
Atik, Jaschar ;
Diddens, Diddo ;
Thienenkamp, Johannes Helmut ;
Brunklaus, Gunther ;
Winter, Martin ;
Paillard, Elie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) :11919-11927
[5]   Stabilizing lithium metal using ionic liquids for long-lived batteries [J].
Basile, A. ;
Bhatt, A. I. ;
O'Mullane, A. P. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries [J].
Becking, Jens ;
Groebmeyer, Albert ;
Kolek, Martin ;
Rodehorst, Uta ;
Schulze, Susanne ;
Winter, Martin ;
Bieker, Peter ;
Stan, Marian Cristian .
ADVANCED MATERIALS INTERFACES, 2017, 4 (16)
[7]   INORGANIC FILM-FORMING ELECTROLYTE ADDITIVES IMPROVING THE CYCLING BEHAVIOR OF METALLIC LITHIUM ELECTRODES AND THE SELF-DISCHARGE OF CARBON LITHIUM ELECTRODES [J].
BESENHARD, JO ;
WAGNER, MW ;
WINTER, M ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF POWER SOURCES, 1993, 44 (1-3) :413-420
[8]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[9]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[10]  
Brunklaus Gunther, 2024, Nature Reviews Electrical Engineering, V1, P79, DOI 10.1038/s44287-023-00006-5