Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT

被引:0
|
作者
Wu, Minghui [1 ,2 ,3 ]
Wan, Ziwei [3 ]
Wang, Yang [3 ]
Liu, Shicong [3 ]
Gao, Zhen [1 ,2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250307, Peoples R China
来源
2022 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS | 2022年
关键词
rate-splitting multiple access (RSMA); deep learning; Transformer; hybrid beamforming; BROADCAST CHANNEL;
D O I
10.1109/ISWCS56560.2022.9940255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beamforming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beamforming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [32] Deep Learning-Based MIMO-NOMA With Imperfect SIC Decoding
    Kang, Jae-Mo
    Kim, Il-Min
    Chun, Chang-Jae
    IEEE SYSTEMS JOURNAL, 2020, 14 (03): : 3414 - 3417
  • [33] Deep Learning Based Channel Estimation Algorithm for Fast Time-Varying MIMO-OFDM Systems
    Liao, Yong
    Hua, Yuanxiao
    Cai, Yunlong
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (03) : 572 - 576
  • [34] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [35] Deep learning-based signal detection in OFDM systems
    Chang D.
    Zhou J.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2020, 50 (05): : 912 - 917
  • [36] Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems
    Morsali, Alireza
    Haghighat, Afshin
    Champagne, Benoit
    IEEE ACCESS, 2022, 10 : 72348 - 72362
  • [37] Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA
    Mao, Yijie
    Clerckx, Bruno
    Li, Victor O. K.
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2018,
  • [38] Optimization of Rate-Splitting Multiple Access in Beyond Diagonal RIS-Assisted URLLC Systems
    Soleymani, Mohammad
    Santamaria, Ignacio
    Jorswieck, Eduard A.
    Clerckx, Bruno
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 5063 - 5078
  • [39] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [40] Deep Learning-Based Pilot Design for Multi-User Distributed Massive MIMO Systems
    Xu, Jun
    Zhu, Pengcheng
    Li, Jiamin
    You, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1016 - 1019