Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT

被引:0
|
作者
Wu, Minghui [1 ,2 ,3 ]
Wan, Ziwei [3 ]
Wang, Yang [3 ]
Liu, Shicong [3 ]
Gao, Zhen [1 ,2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250307, Peoples R China
来源
2022 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS | 2022年
关键词
rate-splitting multiple access (RSMA); deep learning; Transformer; hybrid beamforming; BROADCAST CHANNEL;
D O I
10.1109/ISWCS56560.2022.9940255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beamforming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beamforming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 852 - 855
  • [22] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [23] Deep Learning-Based Downlink Channel Estimation for FDD Massive MIMO Systems
    Xiang, Bingtong
    Hu, Die
    Wu, Jun
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (04) : 699 - 702
  • [24] Deep Learning-Based Channel Estimation for Massive MIMO Systems with Pilot Contamination
    Hirose H.
    Ohtsuki T.
    Gui G.
    IEEE Open Journal of Vehicular Technology, 2021, 2 : 67 - 77
  • [25] Deep Learning-Based Antenna Selection and CSI Extrapolation in Massive MIMO Systems
    Lin, Bo
    Gao, Feifei
    Zhang, Shun
    Zhou, Ting
    Alkhateeb, Ahmed
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7669 - 7681
  • [26] Model-Driven Deep Learning-Based MIMO-OFDM Detector: Design, Simulation, and Experimental Results
    Zhou, Xingyu
    Zhang, Jing
    Syu, Chen-Wei
    Wen, Chao-Kai
    Zhang, Jun
    Jin, Shi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (08) : 5193 - 5207
  • [27] Hybrid Beamforming in MIMO-OFDM Systems with Model-Driven Deep Learning
    Lv, Xianchi
    Zhao, Jingjing
    Wang, Zhipeng
    Liu, Yuanwei
    Zhu, Yanbo
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [28] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416
  • [29] Framework on Deep Learning-Based Joint Hybrid Processing for mmWave Massive MIMO Systems
    Dong, Peihao
    Zhang, Hua
    Li, Geoffrey Ye
    IEEE ACCESS, 2020, 8 : 106023 - 106035
  • [30] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746