Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT

被引:0
|
作者
Wu, Minghui [1 ,2 ,3 ]
Wan, Ziwei [3 ]
Wang, Yang [3 ]
Liu, Shicong [3 ]
Gao, Zhen [1 ,2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Adv Technol Res Inst, Jinan 250307, Peoples R China
来源
2022 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS | 2022年
关键词
rate-splitting multiple access (RSMA); deep learning; Transformer; hybrid beamforming; BROADCAST CHANNEL;
D O I
10.1109/ISWCS56560.2022.9940255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beamforming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beamforming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable Intelligent Surface-Aided Tera-Hertz Massive MIMO
    Wu, Minghui
    Gao, Zhen
    Huang, Yang
    Xiao, Zhenyu
    Ng, Derrick Wing Kwan
    Zhang, Zhaoyang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (05) : 1431 - 1451
  • [2] Secure Rate-Splitting for MIMO Broadcast Channel with Imperfect CSIT and a Jammer
    Zhang, Tong
    Chen, Dongsheng
    Li, Na
    Zhuang, Yufan
    Lv, Bojie
    Wang, Rui
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 24 - 29
  • [3] Rate-Splitting Multiple Access to Mitigate the Curse of Mobility in (Massive) MIMO Networks
    Dizdar, Onur
    Mao, Yijie
    Clerckx, Bruno
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6765 - 6780
  • [4] Deep Learning-Based Signal Detection for Rate-Splitting Multiple Access Under Generalized Gaussian Noise
    Kowshik, Anagha K. K.
    Raghavendra, Ashwini H. H.
    Gurugopinath, Sanjeev
    Muhaidat, Sami
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2023, 4 : 257 - 270
  • [5] Deep Learning Based Fingerprint Positioning for Multi-Cell Massive MIMO-OFDM Systems
    Gong, Xinrui
    Lu, An'an
    Liu, Xiaofeng
    Fu, Xiao
    Gao, Xiqi
    Xia, Xiang-Gen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 3832 - 3849
  • [6] Deep Learning-Based Channel Estimation with Low-Density Pilot in MIMO-OFDM Systems
    Hu, Rui
    Hao, Chenxi
    Zhang, Yu
    Yoo, Taesang
    Namgoong, June
    Xu, Hao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 2619 - 2624
  • [7] Model-Based Deep Learning Receiver Design for Rate-Splitting Multiple Access
    Loli, Rafael Cerna
    Dizdar, Onur
    Clerckx, Bruno
    Ling, Cong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 8352 - 8365
  • [8] Deep Neural Network Based Channel Estimation for Massive MIMO-OFDM Systems With Imperfect Channel State Information
    Ge, Lijun
    Guo, Yuchuan
    Zhang, Yue
    Chen, Gaojie
    Wang, Jintao
    Dai, Bo
    Li, Mingzhou
    Jiang, Tao
    IEEE SYSTEMS JOURNAL, 2022, 16 (03): : 4675 - 4685
  • [9] Deep Learning-Based Radio Map for MIMO-OFDM Downlink Precoding
    Wang W.
    Yang B.
    Zhang W.
    Journal of Communications and Information Networks, 2023, 8 (03): : 203 - 211
  • [10] Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access
    Camana, Mario R.
    Garcia, Carla E.
    Koo, Insoo
    IEEE ACCESS, 2022, 10 : 62137 - 62156