Sweet Potato Yield Prediction Using Machine Learning Based on Multispectral Images Acquired from a Small Unmanned Aerial Vehicle

被引:0
|
作者
Singh, Kriti [1 ]
Huang, Yanbo [2 ]
Young, Wyatt [2 ]
Harvey, Lorin [3 ]
Hall, Mark [3 ]
Zhang, Xin [4 ]
Lobaton, Edgar [1 ]
Jenkins, Johnie [2 ]
Shankle, Mark [3 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[2] USDA ARS, Genet & Sustainable Agr Res Unit, Mississippi State, MS 39762 USA
[3] Mississippi State Univ, Pontotoc Ridge Flatwoods Branch Expt Stn, Pontotoc, MS 38863 USA
[4] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA
来源
AGRICULTURE-BASEL | 2025年 / 15卷 / 04期
关键词
sweet potato; yield; remote sensing; unmanned aerial vehicle; machine learning; VEGETATION INDEX; REFLECTANCE; ALGORITHMS; BAND;
D O I
10.3390/agriculture15040420
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Accurate prediction of sweet potato yield is crucial for effective crop management. This study investigates the use of vegetation indices (VIs) extracted from multispectral images acquired by a small unmanned aerial vehicle (UAV) throughout the growing season, along with in situ-measured plant physiological parameters, to predict sweet potato yield. The data acquisition process through UAV field imaging is discussed in detail along with the extraction process for the multispectral bands that we use as features. The experiment is designed with a combination of different nitrogen application rates and cover crop treatments. The dependence of VIs and crop physiological parameters, such as leaf chlorophyll content, plant biomass, vine length, and leaf nitrogen content, on yield is evaluated through feature selection methods and model performance. Classical machine learning (ML) approaches and tree-based algorithms, like XGBoost and Random Forest, are implemented. Additionally, a soft-voting ML model ensemble approach is employed to improve performance of yield prediction. Individual models are trained and tested for different cover crop and nitrogen treatments to capture the relationships between the treatments and the target yield variable. The performance of the ML algorithms is evaluated using various popular model performance metrics like R2, RMSE, and MAE. Through modelling the data for cover crops and nitrogen treatment rates using individual models, the relationships and effects of different treatments on yield are explored. Important VIs useful for the study are identified through feature selection and model performance evaluation.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery
    Sankaran, Sindhuja
    Zhou, Jianfeng
    Khot, Lay R.
    Trapp, Jennifer J.
    Mndolwa, Eninka
    Miklas, Phillip N.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 84 - 92
  • [32] Analysis of Normalized Vegetation Index in Castile Coffee Crops, Using Mosaics of Multispectral Images Acquired by Unmanned Aerial Vehicle (UAV)
    Mejia Manzano, Julio
    Guerrero Narvaez, Jhon
    Guanarita Castillo, Jose
    Rivera Vasquez, Diego
    Gutierrez Villada, Luis
    APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 546 - 559
  • [33] Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery
    Lu, Ning
    Wang, Wenhui
    Zhang, Qiaofeng
    Li, Dong
    Yao, Xia
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Baret, Fred
    Liu, Shouyang
    Cheng, Tao
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [34] Generation of Large Mosaic Images for Vegetation Monitoring Using a Small Unmanned Aerial Vehicle
    Suzuki, Taro
    Amano, Yoshiharu
    Hashizume, Takumi
    Suzuki, Shinji
    Yamaba, Atsushi
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2010, 22 (02) : 212 - 220
  • [35] COTTON YIELD ESTIMATION USING VERY HIGH-RESOLUTION DIGITAL IMAGES ACQUIRED WITH A LOW-COST SMALL UNMANNED AERIAL VEHICLE
    Huang, Y.
    Brand, H. J.
    Sui, R.
    Thomson, S. J.
    Furukawa, T.
    Ebelhar, M. W.
    Transactions of the ASABE, 2016, 59 (06) : 1563 - 1574
  • [36] Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
    Lee, Hwang
    Wang, Jinfei
    Leblon, Brigitte
    REMOTE SENSING, 2020, 12 (13)
  • [37] Assessment of maize hybrid water status using aerial images from an unmanned aerial vehicle
    Lopes, Alzeneide da S.
    de Andrade Junior, Aderson S.
    Bastos, Edson A.
    de Sousa, Carlos A. F.
    Casari, Raphael A. das C. N.
    de Moura, Magna S. B.
    REVISTA CAATINGA, 2024, 37
  • [38] An Ensemble Machine Learning Model to Estimate Urban Water Quality Parameters Using Unmanned Aerial Vehicle Multispectral Imagery
    Lei, Xiangdong
    Jiang, Jie
    Deng, Zifeng
    Wu, Di
    Wang, Fangyi
    Lai, Chengguang
    Wang, Zhaoli
    Chen, Xiaohong
    REMOTE SENSING, 2024, 16 (12)
  • [39] Assessing Maize Yield Spatiotemporal Variability Using Unmanned Aerial Vehicles and Machine Learning
    de Villiers, Colette
    Mashaba-Munghemezulu, Zinhle
    Munghemezulu, Cilence
    Chirima, George J.
    Tesfamichael, Solomon G.
    GEOMATICS, 2024, 4 (03): : 213 - 236
  • [40] Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery
    Gavrilovic, Milan
    Jovanovic, Dusan
    Bozovic, Predrag
    Benka, Pavel
    Govedarica, Miro
    REMOTE SENSING, 2024, 16 (03)