Influence of external electric field regulating hydrogen adsorption on graphene quantum dots, graphene quantum dots with defects, and metal-ion-doped graphene quantum dots

被引:0
|
作者
Kuamit, Thanawit [1 ]
Mulya, Fadjar [1 ,2 ]
Kongkaew, Sirilak [1 ]
Parasuk, Vudhichai [1 ]
机构
[1] Chulalongkorn Univ, Ctr Excellence Computat Chem, Fac Sci, Dept Chem, Phyathai Rd, Bangkok 10330, Thailand
[2] Airlangga Univ, Fac Adv Technol & Multidiscipline, Nanotechnol Engn, Surabaya 60115, Indonesia
关键词
Hydrogen adsorption; Graphene quantum dots; Charge transfer; Electric filed; DFT; LI DISPERSED GRAPHENE; NONCOVALENT INTERACTIONS; DENSITY FUNCTIONALS; DECORATED GRAPHENE; STORAGE CAPACITY; TI; MONOLAYER; SHEETS; ATOMS; AL;
D O I
10.1016/j.comptc.2024.115050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen storage is crucial for efficient hydrogen energy utilization, but current materials often require extreme conditions, such as low temperatures (<20.15 K) or high pressures (350-700 atm), and an ideal adsorption energy between -0.2 and -0.6 eV. This study employs density functional theory (DFT) to explore hydrogen adsorption on graphene quantum dots (GQDs), including pristine GQDs, nitrogen-substituted divacancy defect GQDs (4N-GQDs), and metal-ion-doped 4N-GQDs (M-4N-GQDs, M = Ti2+, Fe2+, Cu2+, Zn2+). Pristine and 4N-GQDs show comparable adsorption energies (-0.02 eV), while M-4N-GQDs exhibit stronger adsorption, ranging from -0.221 to -0.025 eV. Ti2+-4N-GQD achieves an optimal adsorption energy of -0.221 eV, making it highly suitable for hydrogen storage. The metal center's charge transfer upon hydrogen adsorption influences binding strength. An external electric field (EEF) further reduces adsorption energy, promoting H-2 desorption. These results highlight Ti2+-4N-GQD's potential for regulating H-2 adsorption and desorption in hydrogen storage applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Curving of graphene quantum dots by external electric field
    Kuamit, Thanawit
    Parasuk, Vudhichai
    CHEMICAL PHYSICS LETTERS, 2022, 806
  • [3] Graphene Quantum Dots
    Bacon, Mitchell
    Bradley, Siobhan J.
    Nann, Thomas
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) : 415 - 428
  • [4] Quantum dots in graphene
    Silvestrov, P. G.
    Efetov, K. B.
    PHYSICAL REVIEW LETTERS, 2007, 98 (01)
  • [5] Fabrication of graphene oxide quantum dots (GOQDs) and graphene quantum dots (GQDs)
    Fan, Tianju
    Zeng, Wenjing
    Zhang, Dianbo
    Yuan, Chunqiu
    Tang, Wei
    Tong, Songzhao
    Mo, Shenbin
    Zhao, Chunyan
    Liu, Yidong
    Min, Yong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [6] Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots
    Ahirwar, Satyaprakash
    Mallick, Sudhanshu
    Bahadur, Dhirendra
    ACS OMEGA, 2017, 2 (11): : 8343 - 8353
  • [7] Electric Field Effects on Curved Graphene Quantum Dots
    de-la-Huerta-Sainz, Sergio
    Ballesteros, Angel
    Cordero, Nicolas A.
    MICROMACHINES, 2023, 14 (11)
  • [8] Biological Evaluation of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots as Neurotrophic Agents
    Raghavan, Akshaya
    Radhakrishnan, Mydhili
    Soren, Kalyani
    Wadnerkar, Pratishtha
    Kumar, Arvind
    Chakravarty, Sumana
    Ghosh, Sutapa
    ACS APPLIED BIO MATERIALS, 2023, 6 (06): : 2237 - 2247
  • [9] Quantum confinement in graphene quantum dots
    Huang, Zhongkai
    Qu, Jinfeng
    Peng, Xiangyang
    Liu, Wenliang
    Zhang, Kaiwang
    Wei, Xiaolin
    Zhong, Jianxin
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (05): : 436 - 440
  • [10] Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals
    Dong, Yongqiang
    Lin, Jianpeng
    Chen, Yingmei
    Fu, Fengfu
    Chi, Yuwu
    Chen, Guonan
    NANOSCALE, 2014, 6 (13) : 7410 - 7415