A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT

被引:1
作者
Chen, Yange [1 ,2 ]
Liu, Lei [3 ,4 ]
Ping, Yuan [1 ,2 ]
Atiquzzaman, Mohammed [5 ]
Mumtaz, Shahid [6 ,7 ]
Zhang, Zhili [1 ,8 ]
Guizani, Mohsen [9 ,10 ]
Tian, Zhihong [11 ]
机构
[1] Xuchang Univ, Sch Informat Engn, Xuchang 461000, Peoples R China
[2] Xuchang Univ, Henan Int Joint Lab Polarizat Sensing & Intelligen, Xuchang 461000, Peoples R China
[3] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510000, Peoples R China
[4] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[5] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
[6] Silesian Tech Univ, Dept Appl Informat, PL- 44100 Gliwice, Poland
[7] Nottingham Trent Univ, Dept Comp Sci, Nottingham 4GHKTH, England
[8] Zhongyuan Univ Sci & Technol, Xuchang 461000, Peoples R China
[9] Mohamed Bin Zayed Univ Artificial Intelligence, Machine Learning Dept, Abu Dhabi, U Arab Emirates
[10] Qatar Univ, Comp Sci & Engn Dept, Doha, Qatar
[11] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 510000, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2024年 / 21卷 / 05期
关键词
Federated learning; EC-ElGamal; federated sum; lightweight; fair; ENCRYPTION;
D O I
10.1109/TNSM.2024.3418786
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning offers a partial safeguard for participants' data privacy. Nevertheless, the current absence of an efficient privacy-preserving federated learning technology tailored for the Internet of Things (IoT) poses a challenge. Numerous privacy-preserving federated learning frameworks have been proposed, primarily relying on homomorphic cryptosystems, yet their suitability for IoT remains limited. Furthermore, the application of federated learning in IoT confronts two significant obstacles: mitigating the substantial communication costs and communication failure rates, and effectively discerning and utilizing high-quality data while discarding low-quality data for collaborative modeling purposes. In order to address these challenges, this paper introduces a privacy-preserving optimal aggregation federated learning framework that relies on the utilization of the multi-key EC-ElGamal cryptosystem (MEEC) and the federated sum optimization algorithm (FSOA), which are characterized by their lightweight nature and fair properties. The proposed MEEC approach aims to tackle the issue of multi-key collaborative computing within the context of federated learning, thereby resulting in reduced communication costs and enhanced communication efficiency. This is achieved through the leverage of the EC-ElGamal cryptosystem, which is known for its ability to generate short keys and ciphertexts. Furthermore, this paper presents a dynamic federated learning framework that incorporates user dynamic quit and join algorithms. The primary objective of this framework is to mitigate the adverse effects of communication failures and enhance power computation on IoT devices. Additionally, an FSOA is devised to ensure the acquisition of optimal training data, thereby preventing the inclusion of low-quality data in the training process. Subsequently, the proposed scheme undergoes rigorous security analysis and performance evaluation. The obtained results unequivocally demonstrate that our scheme outperforms existing solutions in terms of security, practicality, and efficiency with lower communication and computational costs.
引用
收藏
页码:5843 / 5858
页数:16
相关论文
共 45 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data
    Bansal, Ankur
    Chen, Tingting
    Zhong, Sheng
    [J]. NEURAL COMPUTING & APPLICATIONS, 2011, 20 (01) : 143 - 150
  • [3] Bogdanov D, 2008, LECT NOTES COMPUT SC, V5283, P192
  • [4] Practical Secure Aggregation for Privacy-Preserving Machine Learning
    Bonawitz, Keith
    Ivanov, Vladimir
    Kreuter, Ben
    Marcedone, Antonio
    McMahan, H. Brendan
    Patel, Sarvar
    Ramage, Daniel
    Segal, Aaron
    Seth, Karn
    [J]. CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1175 - 1191
  • [5] Brakerski Zvika, 2014, ACM Transactions on Computation Theory, V6, DOI 10.1145/2633600
  • [6] Bresson E, 2003, LECT NOTES COMPUT SC, V2894, P37
  • [7] Toward Trustworthy and Privacy-Preserving Federated Deep Learning Service Framework for Industrial Internet of Things
    Bugshan, Neda
    Khalil, Ibrahim
    Rahman, Mohammad Saidur
    Atiquzzaman, Mohammed
    Yi, Xun
    Badsha, Shahriar
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1535 - 1547
  • [8] Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation
    Chen, Yang
    Sun, Xiaoyan
    Jin, Yaochu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 4229 - 4238
  • [9] Cryptanalysis and Improvement of DeepPAR: Privacy-Preserving and Asynchronous Deep Learning for Industrial IoT
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Duan, Pu
    Zhang, Benyu
    Hong, Zhiyong
    Ping, Yuan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21): : 21958 - 21970
  • [10] PDLHR: Privacy-Preserving Deep Learning Model With Homomorphic Re-Encryption in Robot System
    Chen, Yange
    Wang, Baocang
    Zhang, Zhili
    [J]. IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2032 - 2043