Interpretable machine learning model for predicting the prognosis of antibody positive autoimmune encephalitis patients

被引:0
作者
Guo, Junshuang [1 ,2 ]
Dong, Ruirui [1 ]
Zhang, Ruike [1 ]
Yang, Fan [1 ]
Wang, Yating [1 ]
Miao, Wang [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Neurointens Care Unit, Zhengzhou, Henan, Peoples R China
[2] Cent South Univ, Sch Basic Med Sci, Dept Immunol, Changsha, Hunan, Peoples R China
关键词
Autoimmune encephalitis; Machine learning; XGBoost; Random forest; SHAP; GLIOMA-INACTIVATED; 1; LEUCINE-RICH; PROTEIN; PREALBUMIN;
D O I
10.1016/j.jad.2024.10.010
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: The objective was to utilize nine machine learning (ML) methods to predict the prognosis of antibody positive autoimmune encephalitis (AE) patients. Methods: The encephalitis data from the Global Burden of Disease (GBD) study is analyzed to reflect the disease burden of encephalitis. This study included 187 patients with AE. 121 patients as training set and 67 patients as validation set. Decision trees (DT), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor (KNN), support vector machine (SVM), naive bayes (NB), neural network (NN), light gradient boosting machine (LGBM), and logistic regression (LR) are ML methods used to construct predictive models. The constructed models were validated for discrimination, calibration and clinical applicability using validation set data. Shapley additive explanation (SHAP) analysis was used to explain the model. Results: The number of encephalitis worldwide deaths, incidence and prevalence is increasing every year from 2010 to 2021. The training set included 121 patients with AE. Univariate analysis and LASSO screening identified six variables. The results of constructing models using 9 ML methods showed RF had the highest accuracy (0.860), followed by XGBoost (0.826), with F1 scores of 0.844 and 0.807, respectively. Validation set data showed good discrimination, calibration and clinical applicability of the model. The SHAP values of infection, CSF monocyte percentage, and prealbumin were 0.906, 0.790, and 0.644, respectively. Limitations: As a rare disease, the sample size of this study is relatively small. Conclusion: The model constructed using RF and XGBoost has good performance, good discrimination, calibration, clinical applicability, and interpretability.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 44 条
[1]   Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis [J].
Armangue, Thais ;
Spatola, Marianna ;
Vlagea, Alexandru ;
Mattozzi, Simone ;
Carceles-Cordon, Marc ;
Martinez-Heras, Eloy ;
Llufriu, Sara ;
Muchart, Jordi ;
Elena Erro, Maria ;
Abraira, Laura ;
Moris, German ;
Monros-Gimenez, Luis ;
Corral-Corral, Inigo ;
Montejo, Carmen ;
Toledo, Manuel ;
Bataller, Luis ;
Secondi, Gabriela ;
Arino, Helena ;
Martinez-Hernandez, Eugenia ;
Juan, Manel ;
Angeles Marcos, Maria ;
Alsina, Laia ;
Saiz, Albert ;
Rosenfeld, Myrna R. ;
Graus, Francesc ;
Dalmau, Josep .
LANCET NEUROLOGY, 2018, 17 (09) :760-772
[2]   Autoimmune encephalitis with anti-leucine-rich glioma-inactivated 1 or anti-contactin-associated protein-like 2 antibodies (formerly called voltage-gated potassium channel-complex antibodies) [J].
Bastiaansen, Anna E. M. ;
van Sonderen, Agnes ;
Titulaer, Maarten J. .
CURRENT OPINION IN NEUROLOGY, 2017, 30 (03) :302-309
[3]   Statistics Notes: Bootstrap resampling methods [J].
Bland, J. Martin ;
Altman, Douglas G. .
BMJ-BRITISH MEDICAL JOURNAL, 2015, 350
[4]   Association between prealbumin, all-cause mortality, and response to nutrition treatment in patients at nutrition risk. Secondary analysis of a randomized controlled trial [J].
Bretscher, Celine ;
Buergin, Michelle ;
Gurzeler, Gianna ;
Kagi-Braun, Nina ;
Gressies, Carla ;
Tribolet, Pascal ;
Lobo, Dileep N. ;
Evans, David C. ;
Stanga, Zeno ;
Mueller, Beat ;
Schuetz, Philipp .
JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2023, 47 (03) :408-419
[5]   Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies [J].
Dalmau, Josep ;
Gleichman, Amy J. ;
Hughes, Ethen G. ;
Rossi, Jeffrey E. ;
Peng, Xiaoyu ;
Lai, Meizan ;
Dessain, Scott K. ;
Rosenfeld, Mynna R. ;
Balice-Gordon, Rita ;
Lynch, David R. .
LANCET NEUROLOGY, 2008, 7 (12) :1091-1098
[6]   Clinical characteristics and factors associated with short-term prognosis in adult patients with autoimmune encephalitis of non-neoplastic etiology [J].
Dong, Xiaoyu ;
Zheng, Dongming ;
Nao, Jianfei .
NEUROLOGICAL SCIENCES, 2019, 40 (08) :1567-1575
[7]   Clinical Characteristics and Prognosis of Antibody-Negative Autoimmune Encephalitis in Children: A Single-Center Retrospective Study [J].
Dou, Qingyang ;
Yang, Changjian ;
Tian, Maoqiang ;
Yuan, Xing ;
Li, Renke ;
Shu, Xiaomei .
PEDIATRIC NEUROLOGY, 2022, 133 :9-14
[8]   Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method [J].
Dwivedi, Alok Kumar ;
Mallawaarachchi, Indika ;
Alvarado, Luis A. .
STATISTICS IN MEDICINE, 2017, 36 (14) :2187-2205
[9]   Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data [J].
Eshaghi, Arman ;
Young, Alexandra L. ;
Wijeratne, Peter A. ;
Prados, Ferran ;
Arnold, Douglas L. ;
Narayanan, Sridar ;
Guttmann, Charles R. G. ;
Barkhof, Frederik ;
Alexander, Daniel C. ;
Thompson, Alan J. ;
Chard, Declan ;
Ciccarelli, Olga .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Autoimmune Encephalitis Misdiagnosis in Adults [J].
Flanagan, Eoin P. ;
Geschwind, Michael D. ;
Lopez-Chiriboga, A. Sebastian ;
Blackburn, Kyle M. ;
Turaga, Sanchit ;
Binks, Sophie ;
Zitser, Jennifer ;
Gelfand, Jeffrey M. ;
Day, Gregory S. ;
Dunham, S. Richard ;
Rodenbeck, Stefanie J. ;
Clardy, Stacey L. ;
Solomon, Andrew J. ;
Pittock, Sean J. ;
McKeon, Andrew ;
Dubey, Divyanshu ;
Zekeridou, Anastasia ;
Toledano, Michel ;
Turner, Lindsey E. ;
Vernino, Steven ;
Irani, Sarosh R. .
JAMA NEUROLOGY, 2023, 80 (01) :30-39