Accurate non-invasive quantification of astaxanthin content using hyperspectral images and machine learning

被引:0
作者
Calderini, Marco L. [1 ]
Paakkonen, Salli [1 ]
Yli-Tuomola, Aliisa [2 ]
Timilsina, Hemanta [2 ]
Pulkkinen, Katja [2 ]
Polonen, Ilkka [1 ]
Salmi, Pauliina [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2025年 / 87卷
关键词
Astaxanthin; Haematococcus pluvialis; Hyperspectral imaging; Machine learning; Monitoring; HAEMATOCOCCUS-PLUVIALIS; ACCUMULATION; LIGHT;
D O I
10.1016/j.algal.2025.103979
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Commercial cultivation of Haematococcus pluvialis to produce natural astaxanthin has gained significant traction due to its application in feeds, cosmetics and nutraceuticals. However, monitoring of astaxanthin content in cultures remains challenging and requires invasive, time consuming and expensive approaches. Here, we employed reflectance hyperspectral imaging (HSI) of H. pluvialis suspensions within the visible spectrum, combined with a 1-dimensional convolutional neural network (CNN) to predict the astaxanthin content (mu g mg(-1)) quantified by high-performance liquid chromatography (HPLC). This approach had low average prediction error (5.9 %) for samples cultured under the same conditions and was only unreliable at very low astaxanthin contents (<0.6 mu g mg(-1)). In addition, our CNN model outperformed single or dual wavelength linear regression models even when the spectral data was obtained with a spectrophotometer coupled with an integrating sphere. Different cultivation conditions to the ones used for the training of the CNN model affected the reflectance spectra of H. pluvialis cultures, leading to higher prediction errors (32.9 %). Transfer learning, a partial re-training of the model, fine-tunned the CNN to the variability observed in the new samples leading to a lower average prediction error (8.2 %). Overall, this study proposes the use of HSI in combination with a CNN for precise non-invasive quantification of astaxanthin in cell suspensions. Optimal performance is achieved when the training dataset accurately reflects the inherent variability of the target samples to be quantified.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach [J].
Ismail, Siti Nor Ashikin ;
Nayan, Nazrul Anuar ;
Jaafar, Rosmina ;
May, Zazilah .
SENSORS, 2022, 22 (16)
[42]   Non-Invasive Monitoring of Cerebral Edema Using Ultrasonic Echo Signal Features and Machine Learning [J].
Yang, Shuang ;
Yang, Yuanbo ;
Zhou, Yufeng .
BRAIN SCIENCES, 2024, 14 (12)
[43]   Non-invasive phenotyping for water and nitrogen uptake by deep roots explored using machine learning [J].
Changdar, Satyasaran ;
Popovic, Olga ;
Wacker, Tomke Susanne ;
Markussen, Bo ;
Dam, Erik Bjornager ;
Thorup-Kristensen, Kristian .
PLANT AND SOIL, 2023, 493 (1-2) :603-616
[44]   Non-Invasive Multiclass Diabetes Classification Using Breath Biomarkers and Machine Learning with Explainable AI [J].
Gudino-Ochoa, Alberto ;
Garcia-Rodriguez, Julio Alberto ;
Ochoa-Ornelas, Raquel ;
Ruiz-Velazquez, Eduardo ;
Uribe-Toscano, Sofia ;
Cuevas-Chavez, Jorge Ivan ;
Sanchez-Arias, Daniel Alejandro .
DIABETOLOGY, 2025, 6 (06)
[45]   Non-Invasive Glucose Monitoring Using Optical Sensor and Machine Learning Techniques for Diabetes Applications [J].
Shokrekhodaei, Maryamsadat ;
Cistola, David P. ;
Roberts, Robert C. ;
Quinones, Stella .
IEEE ACCESS, 2021, 9 :73029-73045
[46]   Non-invasive prediction mechanism for COVID-19 disease using machine learning algorithms [J].
Bhardwaj, Arnav ;
Agarwal, Hitesh ;
Rani, Anuj ;
Srivastava, Prakash ;
Kumar, Manoj ;
Gupta, Sunil .
INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURES, 2024, 20 (02) :111-124
[47]   Non-invasive measure of heat stress in sheep using machine learning techniques and infrared thermography [J].
Joy, A. ;
Taheri, S. ;
Dunshea, F. R. ;
Leury, B. J. ;
DiGiacomo, K. ;
Osei-Amponsah, R. ;
Brodie, G. ;
Chauhan, S. S. .
SMALL RUMINANT RESEARCH, 2022, 207
[48]   A Novel Non-Invasive Estimation of Respiration Rate From Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model [J].
Shuzan, Md. Nazmul Islam ;
Chowdhury, Moajjem Hossain ;
Hossain, Md. Shafayet ;
Chowdhury, Muhammad E. H. ;
Reaz, Mamun Bin Ibne ;
Uddin, Mohammad Monir ;
Khandakar, Amith ;
Mahbub, Zaid Bin ;
Ali, Sawal Hamid Md. .
IEEE ACCESS, 2021, 9 :96775-96790
[49]   Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels [J].
Dhakal, Kshitiz ;
Sivaramakrishnan, Upasana ;
Zhang, Xuemei ;
Belay, Kassaye ;
Oakes, Joseph ;
Wei, Xing ;
Li, Song .
SENSORS, 2023, 23 (07)
[50]   Preoperative discrimination of invasive and non-invasive breast cancer using machine learning based on automated breast volume scanning (ABVS) radiomics and virtual touch quantification (VTQ) [J].
Fan, Lifang ;
Wu, Yimin ;
Wu, Shujian ;
Zhang, Chaoxue ;
Zhu, Xiangming .
DISCOVER ONCOLOGY, 2024, 15 (01)