Accurate non-invasive quantification of astaxanthin content using hyperspectral images and machine learning

被引:0
作者
Calderini, Marco L. [1 ]
Paakkonen, Salli [1 ]
Yli-Tuomola, Aliisa [2 ]
Timilsina, Hemanta [2 ]
Pulkkinen, Katja [2 ]
Polonen, Ilkka [1 ]
Salmi, Pauliina [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2025年 / 87卷
关键词
Astaxanthin; Haematococcus pluvialis; Hyperspectral imaging; Machine learning; Monitoring; HAEMATOCOCCUS-PLUVIALIS; ACCUMULATION; LIGHT;
D O I
10.1016/j.algal.2025.103979
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Commercial cultivation of Haematococcus pluvialis to produce natural astaxanthin has gained significant traction due to its application in feeds, cosmetics and nutraceuticals. However, monitoring of astaxanthin content in cultures remains challenging and requires invasive, time consuming and expensive approaches. Here, we employed reflectance hyperspectral imaging (HSI) of H. pluvialis suspensions within the visible spectrum, combined with a 1-dimensional convolutional neural network (CNN) to predict the astaxanthin content (mu g mg(-1)) quantified by high-performance liquid chromatography (HPLC). This approach had low average prediction error (5.9 %) for samples cultured under the same conditions and was only unreliable at very low astaxanthin contents (<0.6 mu g mg(-1)). In addition, our CNN model outperformed single or dual wavelength linear regression models even when the spectral data was obtained with a spectrophotometer coupled with an integrating sphere. Different cultivation conditions to the ones used for the training of the CNN model affected the reflectance spectra of H. pluvialis cultures, leading to higher prediction errors (32.9 %). Transfer learning, a partial re-training of the model, fine-tunned the CNN to the variability observed in the new samples leading to a lower average prediction error (8.2 %). Overall, this study proposes the use of HSI in combination with a CNN for precise non-invasive quantification of astaxanthin in cell suspensions. Optimal performance is achieved when the training dataset accurately reflects the inherent variability of the target samples to be quantified.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Non-Invasive Biomarkers in the Era of Big Data and Machine Learning [J].
Lazaros, Konstantinos ;
Adam, Styliani ;
Krokidis, Marios G. ;
Exarchos, Themis ;
Vlamos, Panagiotis ;
Vrahatis, Aristidis G. .
SENSORS, 2025, 25 (05)
[32]   An explainable non-invasive hybrid machine learning framework for accurate prediction of thyroid-stimulating hormone levels [J].
Mohammed, Areej ;
Alshraideh, Hussam ;
Abu-Helalah, Munir ;
Shamayleh, Abdulrahim .
Computers in Biology and Medicine, 2025, 189
[33]   NON-INVASIVE SURVEY OF OLD PAINTINGS USING VNIR HYPERSPECTRAL SENSOR [J].
Matouskova, E. ;
Pavelka, K. ;
Svadlenkova, Z. .
XXIV INTERNATIONAL CIPA SYMPOSIUM, 2013, 40-5-W2 :425-429
[34]   Infrared hyperspectral analysis for non-invasive, inline fat content determination in bakery products [J].
De Temmerman, Arne ;
De Ryck, Matthias ;
Hellemans, Tom ;
Verbeke, Mathias .
2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
[35]   Accurate and non-destructive identification of origins for lily using near-infrared hyperspectral imaging combined with machine learning [J].
Zhao, Qian ;
Miao, Peiqi ;
Liu, Changqing ;
Yu, Yang ;
Li, Zheng .
JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024, 129
[36]   Machine learning-based analysis of non-invasive measurements for predicting intracardiac pressures [J].
van Ravensberg, Annemiek E. ;
Scholte, Niels T. B. ;
Omar Khader, Aaram ;
Brugts, Jasper J. ;
Bruining, Nico ;
van der Boon, Robert M. A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03) :288-294
[37]   Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for Brassica Campestris ssp. Chinensis L. [J].
Xiong, Xin ;
Zhang, Jingjin ;
Guo, Doudou ;
Chang, Liying ;
Huang, Danfeng .
SENSORS, 2019, 19 (11)
[38]   Sweetpotato moisture content and textural property estimation using hyperspectral imaging and machine learning [J].
Yang, Yican ;
Wijewardane, Nuwan K. ;
Harvey, Lorin ;
Zhang, Xin .
JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2025, 19 (04) :2700-2716
[39]   Invasive Measurements Can Provide an Objective Ceiling for Non-invasive Machine Learning Predictions [J].
Bartlett, Christopher W. ;
Bossenbroek, Jamie ;
Ueyama, Yukie ;
Mccallinhart, Patricia E. ;
Trask, Aaron J. ;
Ray, William C. .
PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS (SIGMAP), 2021, :73-80
[40]   Non-invasive phenotyping for water and nitrogen uptake by deep roots explored using machine learning [J].
Satyasaran Changdar ;
Olga Popovic ;
Tomke Susanne Wacker ;
Bo Markussen ;
Erik Bjørnager Dam ;
Kristian Thorup-Kristensen .
Plant and Soil, 2023, 493 :603-616