Jacobi's cubic analog of the pentagonal number theorem and representations of 24n+5 as a sum of two squares

被引:0
作者
Ballantine, Cristina [1 ]
Merca, Mircea [2 ,3 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Natl Univ Sci & Technol Politehn Bucharest, Fundamental Sci Appl Engn Res Ctr, Dept Math Methods & Models, Bucharest 060042, Romania
[3] Acad Romanian Scientists, Bucharest 060042, Romania
关键词
Partitions; Theta series; Pentagonal number theorem; Ramanujan type congruences; SIMPLE PROOF;
D O I
10.1007/s13398-025-01702-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the two squares problem in order to introduce a combinatorial interpretation for Jacobi's cubic analog of Euler's pentagonal number theorem. Under certain conditions imposed by Fermat's theorem on representations of integers as a sum of two squares, we derive a linear homogeneous recurrence relation for Euler's partition function. In this context, we introduce two infinite conjectural families of Ramanujan type congruences and prove several special cases.
引用
收藏
页数:13
相关论文
共 11 条
[1]  
AIGNER M., 2018, Proofs from The Book
[2]   A SIMPLE PROOF OF JACOBIS TRIPLE PRODUCT IDENTITY [J].
ANDREWS, GE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (02) :333-&
[3]  
Andrews GE, 2020, J INTEGER SEQ, V23
[4]  
[Anonymous], 2014, PLOS ONE, DOI DOI 10.1371/journal.pone.0096223
[5]   Congruences modulo 4 for the number of 3-regular partitions [J].
Ballantine, Cristina ;
Merca, Mircea .
COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) :1577-1583
[6]   Bisected theta series, least r-gaps in partitions, and polygonal numbers [J].
Ballantine, Cristina ;
Merca, Mircea .
RAMANUJAN JOURNAL, 2020, 52 (02) :433-444
[7]   Recurrences for the partition function and its relatives [J].
Ewell, JA .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (02) :619-627
[8]   A SIMPLE PROOF OF FERMAT 2-SQUARE THEOREM [J].
EWELL, JA .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (09) :635-637
[9]  
Finch SR., 2003, Encyclopedia of Mathematics and Its Applications, V00001, P94
[10]   CONGRUENCE PROPERTIES MODULO 5 AND 7 FOR THE pod FUNCTION [J].
Radu, Silviu ;
Sellers, James A. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (08) :2249-2259