Local uncertainty maps for land-use/land-cover classification without remote sensing and modeling work using a class-conditional conformal approach

被引:0
作者
Valle, Denis [1 ]
Leite, Rodrigo [2 ]
Izbicki, Rafael [3 ]
Silva, Carlos [1 ]
Haneda, Leo [1 ]
机构
[1] Univ Florida, Sch Forest Fisheries & Geomatics Sci, Gainesville, FL 32603 USA
[2] NASA, Goddard Space Flight Ctr, Postdoctoral Program Fellow, Greenbelt, MD USA
[3] Univ Fed Sao Carlos, Dept Stat, Sao Paulo, Brazil
基金
美国食品与农业研究所; 巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
Conformal statistics; Classification uncertainty; Land-use land-cover; LULC; Image classification; ACCURACY;
D O I
10.1016/j.jag.2024.104288
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Land use/land cover (LULC) is one of the most impactful global change phenomenon. As a result, considerable effort has been devoted to creating large-scale LULC products from remote sensing data, enabling the scientific community to use these products for a wide range of downstream applications. Unfortunately, uncertainty associated with these products is seldom quantified because most approaches are too computationally intensive. Furthermore, uncertainty maps developed for large regions might fail to perform adequately at the spatial scale in which they will be used and might need to be customized to suit the specific applications of end-users. In this study, we describe the class-conditional conformal statistics method, an approach that quantifies uncertainty more uniformly for each class but that requires more calibration data than the conventional conformal method. Using the class-conditional method, we show that it is possible to create customized local uncertainty maps using local calibration data without requiring remote sensing and modeling work and that these local uncertainty maps outperform uncertainty maps calibrated based on global data. We use empirical data from Brazil (i.e., Dynamic World LULC product and Mapbiomas validation data) to demonstrate this methodology. The analysis of these data reveals substantial heterogeneity in observations of the same LULC class between Brazilian states, an indication that national-level data are not representative of the focal state, thus explaining why uncertainty maps calibrated using focal state-level data outperform maps calibrated using national-level data. Importantly, we develop straight-forward approaches to determine the spatial extent over which calibration data are still representative of the area of interest, ensuring that these data can be used to reliably quantify uncertainty. We illustrate the class-conformal methodology by creating uncertainty maps for a selected number of sites in Brazil. Finally, we show how these uncertainty maps can yield valuable insights for LULC map producers. Our methodology paves the way for users to generate customized local uncertainty maps that are likely to be better than uncertainty maps calibrated based on global data while at the same time being more relevant for the specific applications of these users. A tutorial is provided to show how this methodology can be implemented without requiring remote sensing and modeling expertise to generate uncertainty maps.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] CONFORMAL PREDICTION BEYOND EXCHANGEABILITY
    Barber, Rina Foygel
    Candes, Emmanuel J.
    Ramdas, Aaditya
    Tibshirani, Ryan J.
    [J]. ANNALS OF STATISTICS, 2023, 51 (02) : 816 - 845
  • [2] Bertels, 2020, COPERNICUS GLOBAL LA
  • [3] Dynamic World, Near real-time global 10 m land use land cover mapping
    Brown, Christopher F.
    Brumby, Steven P.
    Guzder-Williams, Brookie
    Birch, Tanya
    Hyde, Samantha Brooks
    Mazzariello, Joseph
    Czerwinski, Wanda
    Pasquarella, Valerie J.
    Haertel, Robert
    Ilyushchenko, Simon
    Schwehr, Kurt
    Weisse, Mikaela
    Stolle, Fred
    Hanson, Craig
    Guinan, Oliver
    Moore, Rebecca
    Tait, Alexander M.
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [4] Estimating per-pixel thematic uncertainty in remote sensing classifications
    Brown, K. M.
    Foody, G. M.
    Atkinson, P. M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (01) : 209 - 229
  • [5] Assessing the uncertainty arising from standard land-cover mapping procedures when modelling species distributions
    Canibe, Miguel
    Titeux, Nicolas
    Dominguez, Jesus
    Regos, Adrian
    [J]. DIVERSITY AND DISTRIBUTIONS, 2022, 28 (04) : 636 - 648
  • [6] Quantifying Uncertainty in Land-Use/Land-Cover Classification Accuracy: A Stochastic Simulation Approach
    Cheng, Ke-Sheng
    Ling, Jia-Yi
    Lin, Teng-Wei
    Liu, Yin-Ting
    Shen, You-Chen
    Kono, Yasuyuki
    [J]. FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9
  • [7] Pervasive human-driven decline of life on Earth points to the need for transformative change
    Diaz, Sandra
    Settele, Josef
    Brondizio, Eduardo S.
    Ngo, Hien T.
    Agard, John
    Arneth, Almut
    Balvanera, Patricia
    Brauman, Kate A.
    Butchart, Stuart H. M.
    Chan, Kai M. A.
    Garibaldi, Lucas A.
    Ichii, Kazuhito
    Liu, Jianguo
    Subramanian, Suneetha M.
    Midgley, Guy F.
    Miloslavich, Patricia
    Molnar, Zsolt
    Obura, David
    Pfaff, Alexander
    Polasky, Stephen
    Purvis, Andy
    Razzaque, Jona
    Reyers, Belinda
    Chowdhury, Rinku Roy
    Shin, Yunne-Jai
    Visseren-Hamakers, Ingrid
    Willis, Katherine J.
    Zayas, Cynthia N.
    [J]. SCIENCE, 2019, 366 (6471) : 1327 - +
  • [8] Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
    Duncanson, Laura
    Kellner, James R.
    Armston, John
    Dubayah, Ralph
    Minor, David M.
    Hancock, Steven
    Healey, Sean P.
    Patterson, Paul L.
    Saarela, Svetlana
    Marselis, Suzanne
    Silva, Carlos E.
    Bruening, Jamis
    Goetz, Scott J.
    Tang, Hao
    Hofton, Michelle
    Blair, Bryan
    Luthcke, Scott
    Fatoyinbo, Lola
    Abernethy, Katharine
    Alonso, Alfonso
    Andersen, Hans-Erik
    Aplin, Paul
    Baker, Timothy R.
    Barbier, Nicolas
    Bastin, Jean Francois
    Biber, Peter
    Boeckx, Pascal
    Bogaert, Jan
    Boschetti, Luigi
    Boucher, Peter Brehm
    Boyd, Doreen S.
    Burslem, David F. R. P.
    Calvo-Rodriguez, Sofia
    Chave, Jerome
    Chazdon, Robin L.
    Clark, David B.
    Clark, Deborah A.
    Cohen, Warren B.
    Coomes, David A.
    Corona, Piermaria
    Cushman, K. C.
    Cutler, Mark E. J.
    Dalling, James W.
    Dalponte, Michele
    Dash, Jonathan
    de-Miguel, Sergio
    Deng, Songqiu
    Ellis, Peter Woods
    Erasmus, Barend
    Fekety, Patrick A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 270
  • [9] Latent Class Modeling for Site- and Non-Site-Specific Classification Accuracy Assessment Without Ground Data
    Foody, Giles M.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07): : 2827 - 2838
  • [10] Status of land cover classification accuracy assessment
    Foody, GM
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 80 (01) : 185 - 201