Symplectic codes over a non-unitary ring

被引:0
|
作者
Manseri, Sarra [1 ]
Betty, Rowena Alma [2 ]
Galvez, Lucky [2 ]
Sole, Patrick [3 ]
机构
[1] Cent China Normal Univ, Wuhan 430079, Peoples R China
[2] Univ Philippines Diliman, Inst Math, Quezon City 1101, Philippines
[3] Univ Aix Marseille, CNRS, I2M, F-13009 Marseilles, France
关键词
Non-unitary rings; symplectic codes; additive F-4-code; mass formula;
D O I
10.1142/S021949882541018X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the commutative non-unitary ring of order four defined as I = {a,b|2a = 0, 2b = 0,a(2) = b,ab = 0}. Self-orthogonal codes for a symplectic inner product over I are introduced. A mass formula to enumerate them under symplectic equivalence is given. An application is a classification of such codes in short lengths.
引用
收藏
页数:14
相关论文
共 31 条
  • [1] The build up construction for codes over a non-commutative non-unitary ring of order 9
    Alahmadi, Adel
    Alihia, Tamador
    Sole, Patrick
    AIMS MATHEMATICS, 2024, 9 (07): : 18278 - 18307
  • [2] The Build-Up Construction for Codes over a Commutative Non-Unitary Ring of Order 9
    Alahmadi, Adel
    Alihia, Tamador
    Alma Betty, Rowena
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [3] The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring
    Alahmadi, Adel
    Alshuhail, Altaf
    Sole, Patrick
    AIMS MATHEMATICS, 2023, 8 (10): : 24367 - 24378
  • [4] The Mass Formula for Self-Orthogonal and Self-Dual Codes over a Non-Unitary Non-Commutative Ring
    Alahmadi, Adel
    Alshuhail, Altaf
    Betty, Rowena Alma
    Galvez, Lucky
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [5] Cyclic Codes over a Non-Local Non-Unital Ring
    Alahmadi, Adel
    Altaiary, Malak
    Sole, Patrick
    MATHEMATICS, 2024, 12 (06)
  • [6] Cyclic Codes over a Non-Commutative Non-Unital Ring
    Alahmadi, Adel
    Altaiary, Malak
    Sole, Patrick
    MATHEMATICS, 2024, 12 (13)
  • [7] Classification of cyclic codes over a non-Galois chain ring Zp [u] / ⟨u3⟩
    Kim, Boran
    Lee, Yoonjin
    Doo, Jisoo
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 : 208 - 237
  • [8] NOTES ON THE FIDELITY OF SYMPLECTIC QUANTUM ERROR-CORRECTING CODES
    Hamada, Mitsuru
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) : 443 - 463
  • [9] Classification of self-dual cyclic codes over the chain ring Zp[u]/⟨u3⟩
    Kim, Boran
    Lee, Yoonjin
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (10) : 2247 - 2273
  • [10] Self-orthogonal Codes over Fq
    Galvez, Lucky Erap
    Betty, Rowena Alma
    Nemenzo, Fidel
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (04): : 873 - 892