Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles

被引:1
作者
Wang, Longyu [1 ]
Li, Yichen [1 ]
Jiang, Pingge [1 ]
Bai, Hao [1 ]
Wu, Chengfan [1 ]
Shuai, Qi [2 ]
Yan, Yunfeng [1 ]
机构
[1] Zhejiang Univ Technol, Coll Biotechnol & Bioengn, Hangzhou 310014, Peoples R China
[2] Zhejiang Univ Technol, Collaborat Innovat Ctr Yangtze River Delta Reg Gre, Hangzhou 310014, Peoples R China
关键词
MRNA delivery; Ionizable lipids; Lipid nanoparticle; Hydrophobic interaction; IN-VIVO; OPTIMIZATION; FORMULATIONS;
D O I
10.1016/j.colsurfb.2025.114528
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy. The results indicated that this influence depended on the chemical structure of the additional amines and the structure of the lipid carriers. The appropriate addition of the hydrophobic amine 2C8 to lipid carriers with structural 2C8 or 2C6 tails significantly increased their mRNA delivery efficiency. In contrast, the addition of hydrophobic amine C18 to LNPs resulted in a decrease in mRNA delivery efficiency, while the addition of hydrophobic amines 2C6 and C8, as well as alkanes C12' and C16', had relatively little effect on mRNA delivery. Further investigations demonstrated that the appropriate addition of 2C8 could reduce LNP size, moderate internal hydrophobicity and LNP stability, facilitate mRNA release, enhance cellular uptake, and improve intracellular transportation of LNPs, thereby achieving superior mRNA delivery efficiency. These findings highlight the important role of additional hydrophobic amines in mRNA delivery with LNPs and provide valuable insights for the advancement of mRNA delivery carriers.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[2]   Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering [J].
Billingsley, Margaret M. ;
Singh, Nathan ;
Ravikumar, Pranali ;
Zhang, Rui ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2020, 20 (03) :1578-1589
[3]   The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose [J].
Chagla, Zain .
ANNALS OF INTERNAL MEDICINE, 2021, 174 (02) :JC15-JC15
[4]   The interaction mechanism between liposome and whey protein: Effect of liposomal vesicles concentration [J].
Chen, Yang ;
Yi, Xiangzhou ;
Pan, Min-Hsiung ;
Chiou, Yi-Shiou ;
Li, Zhenshun ;
Wei, Shudong ;
Yin, Xiaoli ;
Ding, Baomiao .
JOURNAL OF FOOD SCIENCE, 2021, 86 (06) :2491-2498
[5]   Modular Design of Biodegradable Ionizable Lipids for Improved mRNA Delivery and Precise Cancer Metastasis Delineation In Vivo [J].
Chen, Zhaoming ;
Tian, Yang ;
Yang, Jieyu ;
Wu, Fapu ;
Liu, Senyao ;
Cao, Wenwen ;
Xu, Weijia ;
Hu, Tao ;
Siegwart, Daniel J. ;
Xiong, Hu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (44) :24302-24314
[6]   Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing [J].
Cheng, Qiang ;
Wei, Tuo ;
Farbiak, Lukas ;
Johnson, Lindsay T. ;
Dilliard, Sean A. ;
Siegwart, Daniel J. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :313-+
[7]   Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery [J].
Fenton, Owen S. ;
Kauffman, Kevin J. ;
McClellan, Rebecca L. ;
Appel, Eric A. ;
Dorkin, J. Robert ;
Tibbitt, Mark W. ;
Heartlein, Michael W. ;
DeRosa, Frank ;
Langer, Robert ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2016, 28 (15) :2939-2943
[8]   Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH [J].
Hajj, Khalid A. ;
Ball, Rebecca L. ;
Deluty, Sarah B. ;
Singh, Shridhar R. ;
Strelkova, Daria ;
Knapp, Christopher M. ;
Whitehead, Kathryn A. .
SMALL, 2019, 15 (06)
[9]   The use of design of experiments with multiple responses to determine optimal formulations for in vivo hepatic mRNA delivery [J].
Hashiba, Akari ;
Toyooka, Manaya ;
Sato, Yusuke ;
Maeki, Masatoshi ;
Tokeshi, Manabu ;
Harashima, Hideyoshi .
JOURNAL OF CONTROLLED RELEASE, 2020, 327 :467-476
[10]   A Multidimensional Approach to Modulating Ionizable Lipids for High-Performing and Organ-Selective mRNA Delivery [J].
He, Zepeng ;
Le, Zhicheng ;
Shi, Yi ;
Liu, Lixin ;
Liu, Zhijia ;
Chen, Yongming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (43)