Fuzzy dissimilarities and the fuzzy Choquet integral of triangular fuzzy numbers on [0,1]

被引:0
作者
de Hierro, A. F. Roldan Lopez [1 ]
Cruz, A. [2 ]
Santiago, R. H. N. [3 ]
Roldan, C. [1 ]
Garcia-Zamora, D. [4 ]
Neres, F. [5 ]
Bustince, H. [6 ]
机构
[1] Univ Granada, Dept Stat & Operat Res, Granada, Spain
[2] Univ Fed Rio Grande do Norte, Inst Metropole Digital, Natal, RN, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Informat & Matemat Aplicada, Natal, RN, Brazil
[4] Univ Jaen, Dept Comp, Jaen, Spain
[5] Univ Fed Rural Semi Arido, Dept Ciencia & Tecnol, Caraubas, Caraubas, RN, Brazil
[6] Univ Publ Navarra, Dept Estadist Informat & Matemat, Pamplona, Spain
关键词
Choquet integral; Fuzzy number; Dissimilarity; Ranking; Alpha-ordering; Binary relation; RESTRICTED EQUIVALENCE FUNCTIONS; AGGREGATION;
D O I
10.1016/j.fss.2025.109277
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Having in mind the huge amount of data daily registered in the world, it is becoming increasingly important to summarize the information included in a data set. In Statistics and Computer Science, this task is successfully carried out by aggregation functions. One of the most widely applied methodologies of aggregating data is the Choquet integral. The main aim of this paper is to introduce an appropriate notion of Choquet integral in the context of fuzzy numbers. To do this, we face three challenges: the underlying uncertainty when handling fuzzy numbers, the way to order fuzzy numbers by appropriate binary relations and the way to compute the dissimilarity among fuzzy numbers. Illustrative examples are given by involving the alpha-order on the family of all triangular fuzzy numbers with support on [0, 1].
引用
收藏
页数:29
相关论文
共 28 条
  • [1] A fuzzy regression model based on finite fuzzy numbers and its application to real-world financial data
    Alfonso, G.
    Lopez de Hierro, A. F. Roldan
    Roldan, C.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 47 - 58
  • [2] Simplifying the Search for Effective Ranking of Fuzzy Numbers
    Ban, Adrian I.
    Coroianu, Lucian
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (02) : 327 - 339
  • [3] Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
  • [4] Beliakov G., 2007, Aggregation Functions: A Guide for Practitioners, DOI DOI 10.1007/978-3-540-73721-6
  • [5] How different are ranking methods for fuzzy numbers? A numerical study
    Brunelli, Matteo
    Mezei, Jozsef
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (05) : 627 - 639
  • [6] Relationship between restricted dissimilarity functions, restricted equivalence functions and normal EN-functions:: Image thresholding invariant
    Bustince, H.
    Barrenechea, E.
    Pagola, M.
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (04) : 525 - 536
  • [7] d-Choquet integrals: Choquet integrals based on dissimilarities
    Bustince, H.
    Mesiar, R.
    Fernandez, J.
    Galar, M.
    Paternain, D.
    Altalhi, A.
    Dimuro, G. P.
    Bedregal, B.
    Takac, Z.
    [J]. FUZZY SETS AND SYSTEMS, 2021, 414 : 1 - 27
  • [8] A Historical Account of Types of Fuzzy Sets and Their Relationships
    Bustince, Humberto
    Barrenechea, Edurne
    Pagola, Miguel
    Fernandez, Javier
    Xu, Zeshui
    Bedregal, Benjamin
    Montero, Javier
    Hagras, Hani
    Herrera, Francisco
    De Baets, Bernard
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (01) : 179 - 194
  • [9] Chakraverty S., 2019, Concepts of Soft Computing, DOI DOI 10.1007/978-981-13-7430-23
  • [10] Choquet G., 1953, ANN LINSTITUT FOURIE, V5, P131, DOI DOI 10.5802/AIF.53