Diophantine approximation with mixed powers of primes

被引:0
作者
Fu, Linzhu [1 ]
Hu, Liqun [1 ]
Long, Xuan [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
关键词
Exceptional set; Sieve functions; Diophantine inequality; Prime; TERNARY QUADRATIC-FORMS; SQUARES; VALUES;
D O I
10.1007/s11139-024-01010-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that lambda(1),lambda(2),lambda(3) are non-zero real numbers, where lambda(1)/lambda(2) is an irrational number. Let V be a well-spaced sequence, and delta>0. For any given positive integer k >= 3, we give an upper bound of the number of upsilon is an element of V with upsilon <= X for which the inequality |lambda(1)p(1)+lambda(2)p(2)(2)+lambda(3)p(3)(k)-upsilon|<upsilon(-delta) has no solution in primes p(1), p(2), p(3).
引用
收藏
页数:16
相关论文
共 14 条
  • [1] BAKER A, 1967, J REINE ANGEW MATH, V228, P166
  • [2] Cook R.J., 1997, Sieve Methods, Exponential Sums, and Their Applications in Number Theory, Cardiff, 1995, V237, P87
  • [3] The values of ternary quadratic forms at prime arguments
    Cook, RJ
    Fox, A
    [J]. MATHEMATIKA, 2001, 48 (95-96) : 137 - 149
  • [4] ON INTEGRAL PART OF A LINEAR FORM WITH PRIME VARIABLES
    DANICIC, I
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (03): : 621 - &
  • [5] Davenport H., 1946, J. Lond. Math. Soc., V21, P185, DOI [10.1112/jlms/s1-21.3.185, DOI 10.1112/JLMS/S1-21.3.185]
  • [6] Feng Z.Z., 2019, The exceptional sets for Waring-Goldbach problem
  • [7] The values of ternary quadratic forms at prime arguments
    Harman, G
    [J]. MATHEMATIKA, 2004, 51 (101-02) : 83 - 96
  • [8] On sums of squares of primes
    Harman, G
    Kumchev, AV
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 : 1 - 13
  • [9] Hua LK., 1938, Q J MATH OXFORD, V9, P68
  • [10] On a ternary Diophantine problem with mixed powers of primes
    Languasco, Alessandro
    Zaccagnini, Alessandro
    [J]. ACTA ARITHMETICA, 2013, 159 (04) : 345 - 362